ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.10539
  4. Cited By
Uncertainty Autoencoders: Learning Compressed Representations via
  Variational Information Maximization
v1v2v3 (latest)

Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization

26 December 2018
Aditya Grover
Stefano Ermon
ArXiv (abs)PDFHTML

Papers citing "Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization"

24 / 24 papers shown
Title
On the Convergence of Learning-based Iterative Methods for Nonconvex
  Inverse Problems
On the Convergence of Learning-based Iterative Methods for Nonconvex Inverse Problems
Risheng Liu
Shichao Cheng
Yi He
Xin-Yue Fan
Zhouchen Lin
Zhongxuan Luo
56
68
0
16 Aug 2018
Modeling Sparse Deviations for Compressed Sensing using Generative
  Models
Modeling Sparse Deviations for Compressed Sensing using Generative Models
Manik Dhar
Aditya Grover
Stefano Ermon
64
79
0
04 Jul 2018
Compressed Sensing with Deep Image Prior and Learned Regularization
Compressed Sensing with Deep Image Prior and Learned Regularization
Dave Van Veen
A. Jalal
Mahdi Soltanolkotabi
Eric Price
S. Vishwanath
A. Dimakis
70
182
0
17 Jun 2018
Amortized Inference Regularization
Amortized Inference Regularization
Rui Shu
Hung Bui
Shengjia Zhao
Mykel J. Kochenderfer
Stefano Ermon
DRL
50
82
0
23 May 2018
ConvCSNet: A Convolutional Compressive Sensing Framework Based on Deep
  Learning
ConvCSNet: A Convolutional Compressive Sensing Framework Based on Deep Learning
Xiaotong Lu
W. Dong
Peiyao Wang
Guangming Shi
Xuemei Xie
58
29
0
31 Jan 2018
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
95
447
0
07 Jun 2017
Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk
Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk
Paul Hand
V. Voroninski
UQCV
140
138
0
22 May 2017
One Network to Solve Them All --- Solving Linear Inverse Problems using
  Deep Projection Models
One Network to Solve Them All --- Solving Linear Inverse Problems using Deep Projection Models
Jen-Hao Rick Chang
Chun-Liang Li
Barnabás Póczós
B. Kumar
Aswin C. Sankaranarayanan
63
348
0
29 Mar 2017
Compressed Sensing using Generative Models
Compressed Sensing using Generative Models
Ashish Bora
A. Jalal
Eric Price
A. Dimakis
155
812
0
09 Mar 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
128
1,728
0
01 Dec 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRLSSLGAN
152
676
0
08 Nov 2016
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
192
417
0
11 Oct 2016
Variational Information Maximization for Feature Selection
Variational Information Maximization for Feature Selection
Shuyang Gao
Greg Ver Steeg
Aram Galstyan
46
49
0
09 Jun 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GANOOD
271
14,023
0
19 Nov 2015
Variational Information Maximisation for Intrinsically Motivated
  Reinforcement Learning
Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning
S. Mohamed
Danilo Jimenez Rezende
DRLSSL
99
402
0
29 Sep 2015
A Deep Learning Approach to Structured Signal Recovery
A Deep Learning Approach to Structured Signal Recovery
Ali Mousavi
Ankit B. Patel
Richard G. Baraniuk
56
443
0
17 Aug 2015
Gradient Estimation Using Stochastic Computation Graphs
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
148
395
0
17 Jun 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
247
8,426
0
28 Nov 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Generalized Denoising Auto-Encoders as Generative Models
Generalized Denoising Auto-Encoders as Generative Models
Yoshua Bengio
L. Yao
Guillaume Alain
Pascal Vincent
116
540
0
29 May 2013
What Regularized Auto-Encoders Learn from the Data Generating
  Distribution
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Guillaume Alain
Yoshua Bengio
OODDRL
72
505
0
18 Nov 2012
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
274
12,458
0
24 Jun 2012
Statistical Compressed Sensing of Gaussian Mixture Models
Statistical Compressed Sensing of Gaussian Mixture Models
Guoshen Yu
Guillermo Sapiro
95
86
0
30 Jan 2011
Simultaneous analysis of Lasso and Dantzig selector
Simultaneous analysis of Lasso and Dantzig selector
Peter J. Bickel
Yaácov Ritov
Alexandre B. Tsybakov
535
2,531
0
07 Jan 2008
1