ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.09922
  4. Cited By
Dynamic Runtime Feature Map Pruning

Dynamic Runtime Feature Map Pruning

24 December 2018
Tailin Liang
Lei Wang
Shaobo Shi
C. Glossner
    3DPC
ArXivPDFHTML

Papers citing "Dynamic Runtime Feature Map Pruning"

7 / 7 papers shown
Title
Mixed Precision Training of Convolutional Neural Networks using Integer
  Operations
Mixed Precision Training of Convolutional Neural Networks using Integer Operations
Dipankar Das
Naveen Mellempudi
Dheevatsa Mudigere
Dhiraj D. Kalamkar
Sasikanth Avancha
...
J. Corbal
N. Shustrov
R. Dubtsov
Evarist Fomenko
V. Pirogov
MQ
34
154
0
03 Feb 2018
Dynamic Routing Between Capsules
Dynamic Routing Between Capsules
S. Sabour
Nicholas Frosst
Geoffrey E. Hinton
60
4,584
0
26 Oct 2017
Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep
  Neural Networks
Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks
Minsoo Rhu
Mike O'Connor
Niladrish Chatterjee
Jeff Pool
S. Keckler
40
176
0
03 May 2017
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
Vivienne Sze
Yu-hsin Chen
Tien-Ju Yang
J. Emer
AAML
3DV
83
3,002
0
27 Mar 2017
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
  model size
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
100
7,448
0
24 Feb 2016
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
168
8,793
0
01 Oct 2015
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
139
14,703
0
20 Jun 2014
1