ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.06190
  4. Cited By
Learning Latent Subspaces in Variational Autoencoders

Learning Latent Subspaces in Variational Autoencoders

14 December 2018
Jack Klys
Jake C. Snell
R. Zemel
    SSL
    DRL
ArXivPDFHTML

Papers citing "Learning Latent Subspaces in Variational Autoencoders"

30 / 30 papers shown
Title
GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
Seungheun Baek
Soyon Park
Y. T. Chok
Mogan Gim
Jaewoo Kang
DRL
47
0
0
31 Jan 2025
Disentangling representations of retinal images with generative models
Disentangling representations of retinal images with generative models
Sarah Muller
Lisa M. Koch
Hendrik P. A. Lensch
Philipp Berens
MedIm
32
3
0
29 Feb 2024
A multimodal dynamical variational autoencoder for audiovisual speech
  representation learning
A multimodal dynamical variational autoencoder for audiovisual speech representation learning
Samir Sadok
Simon Leglaive
Laurent Girin
Xavier Alameda-Pineda
Renaud Séguier
33
11
0
05 May 2023
Generating Features with Increased Crop-related Diversity for Few-Shot
  Object Detection
Generating Features with Increased Crop-related Diversity for Few-Shot Object Detection
Jingyi Xu
Hieu M. Le
Dimitris Samaras
ObjD
23
26
0
11 Apr 2023
Multi-objective Deep Data Generation with Correlated Property Control
Multi-objective Deep Data Generation with Correlated Property Control
Shiyu Wang
Xiaojie Guo
Xuanyang Lin
Bo Pan
Yuanqi Du
...
S. Alkhalifa
K. Minbiole
Bill Wuest
Amarda Shehu
Liang Zhao
AI4CE
54
14
0
01 Oct 2022
Outcome-Guided Counterfactuals for Reinforcement Learning Agents from a
  Jointly Trained Generative Latent Space
Outcome-Guided Counterfactuals for Reinforcement Learning Agents from a Jointly Trained Generative Latent Space
Eric Yeh
Pedro Sequeira
Jesse Hostetler
Melinda Gervasio
OOD
CML
BDL
OffRL
25
2
0
15 Jul 2022
Comparing the latent space of generative models
Comparing the latent space of generative models
Andrea Asperti
Valerio Tonelli
DRL
26
12
0
14 Jul 2022
Identifiability of deep generative models without auxiliary information
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
26
49
0
20 Jun 2022
Gradient-based Counterfactual Explanations using Tractable Probabilistic
  Models
Gradient-based Counterfactual Explanations using Tractable Probabilistic Models
Xiaoting Shao
Kristian Kersting
BDL
22
1
0
16 May 2022
Learning Conditional Invariance through Cycle Consistency
Learning Conditional Invariance through Cycle Consistency
M. Samarin
V. Nesterov
Mario Wieser
Aleksander Wieczorek
S. Parbhoo
Volker Roth
39
3
0
25 Nov 2021
Group-disentangled Representation Learning with Weakly-Supervised
  Regularization
Group-disentangled Representation Learning with Weakly-Supervised Regularization
Linh-Tam Tran
Amir Hosein Khasahmadi
Aditya Sanghi
Saeid Asgari Taghanaki
DRL
34
1
0
23 Oct 2021
PluGeN: Multi-Label Conditional Generation From Pre-Trained Models
PluGeN: Multi-Label Conditional Generation From Pre-Trained Models
Maciej Wołczyk
Magdalena Proszewska
Lukasz Maziarka
Maciej Ziȩba
Patryk Wielopolski
Rafał Kurczab
Marek Śmieja
DRL
27
5
0
18 Sep 2021
Efficient Out-of-Distribution Detection Using Latent Space of
  $β$-VAE for Cyber-Physical Systems
Efficient Out-of-Distribution Detection Using Latent Space of βββ-VAE for Cyber-Physical Systems
Shreyas Ramakrishna
Zahra Rahiminasab
G. Karsai
Arvind Easwaran
Abhishek Dubey
OODD
19
27
0
26 Aug 2021
Invariance-based Multi-Clustering of Latent Space Embeddings for
  Equivariant Learning
Invariance-based Multi-Clustering of Latent Space Embeddings for Equivariant Learning
Chandrajit L. Bajaj
A. Roy
Haoran Zhang
BDL
DRL
26
1
0
25 Jul 2021
Promises and Pitfalls of Black-Box Concept Learning Models
Promises and Pitfalls of Black-Box Concept Learning Models
Anita Mahinpei
Justin Clark
Isaac Lage
Finale Doshi-Velez
Weiwei Pan
31
91
0
24 Jun 2021
Learning Robust Latent Representations for Controllable Speech Synthesis
Learning Robust Latent Representations for Controllable Speech Synthesis
Shakti Kumar
Jithin Pradeep
Hussain Zaidi
DRL
30
6
0
10 May 2021
Advances in Electron Microscopy with Deep Learning
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
35
2
0
04 Jan 2021
3DMolNet: A Generative Network for Molecular Structures
3DMolNet: A Generative Network for Molecular Structures
V. Nesterov
Mario Wieser
Volker Roth
AI4CE
173
33
0
08 Oct 2020
MagGAN: High-Resolution Face Attribute Editing with Mask-Guided
  Generative Adversarial Network
MagGAN: High-Resolution Face Attribute Editing with Mask-Guided Generative Adversarial Network
Yi Wei
Zhe Gan
Wenbo Li
Siwei Lyu
Ming-Ching Chang
Lefei Zhang
Jianfeng Gao
Pengchuan Zhang
GAN
CVBM
27
18
0
03 Oct 2020
Review: Deep Learning in Electron Microscopy
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
34
79
0
17 Sep 2020
Multilinear Latent Conditioning for Generating Unseen Attribute
  Combinations
Multilinear Latent Conditioning for Generating Unseen Attribute Combinations
Markos Georgopoulos
Grigorios G. Chrysos
M. Pantic
Yannis Panagakis
GAN
DRL
19
19
0
09 Sep 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
27
25
0
14 Jul 2020
Warwick Electron Microscopy Datasets
Warwick Electron Microscopy Datasets
Jeffrey M. Ede
22
14
0
02 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Study of Deep Generative Models for Inorganic Chemical Compositions
Study of Deep Generative Models for Inorganic Chemical Compositions
Yoshihide Sawada
Koji Morikawa
Mikiya Fujii
GAN
20
13
0
25 Oct 2019
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
42
136
0
22 Oct 2019
High Mutual Information in Representation Learning with Symmetric
  Variational Inference
High Mutual Information in Representation Learning with Symmetric Variational Inference
M. Livne
Kevin Swersky
David J. Fleet
SSL
DRL
33
0
0
04 Oct 2019
DualDis: Dual-Branch Disentangling with Adversarial Learning
DualDis: Dual-Branch Disentangling with Adversarial Learning
Thomas Robert
Nicolas Thome
Matthieu Cord
CoGe
DRL
25
4
0
03 Jun 2019
DIVA: Domain Invariant Variational Autoencoders
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRL
OOD
28
198
0
24 May 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
29
123
0
03 May 2019
1