ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.05941
  4. Cited By
Context-encoding Variational Autoencoder for Unsupervised Anomaly
  Detection

Context-encoding Variational Autoencoder for Unsupervised Anomaly Detection

14 December 2018
David Zimmerer
Simon A. A. Kohl
Jens Petersen
Fabian Isensee
Klaus H. Maier-Hein
    DRL
ArXivPDFHTML

Papers citing "Context-encoding Variational Autoencoder for Unsupervised Anomaly Detection"

19 / 19 papers shown
Title
Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs
Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs
F. Behrendt
Debayan Bhattacharya
R. Mieling
Lennart Maack
Julia Kruger
R. Opfer
Alexander Schlaefer
DiffM
MedIm
69
10
0
07 Dec 2023
A Case for the Score: Identifying Image Anomalies using Variational
  Autoencoder Gradients
A Case for the Score: Identifying Image Anomalies using Variational Autoencoder Gradients
David Zimmerer
Jens Petersen
Simon A. A. Kohl
Klaus H. Maier-Hein
DRL
44
22
0
28 Nov 2019
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
BDL
DRL
50
214
0
06 Feb 2019
Do Deep Generative Models Know What They Don't Know?
Do Deep Generative Models Know What They Don't Know?
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
OOD
57
756
0
22 Oct 2018
Sanity Checks for Saliency Maps
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
123
1,963
0
08 Oct 2018
An Intriguing Failing of Convolutional Neural Networks and the CoordConv
  Solution
An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution
Rosanne Liu
Joel Lehman
Piero Molino
F. Such
Eric Frank
Alexander Sergeev
J. Yosinski
71
889
0
09 Jul 2018
Deep Generative Models in the Real-World: An Open Challenge from Medical
  Imaging
Deep Generative Models in the Real-World: An Open Challenge from Medical Imaging
Xiaoran Chen
Nick Pawlowski
Martin Rajchl
Ben Glocker
E. Konukoglu
OOD
MedIm
42
49
0
14 Jun 2018
Unsupervised Detection of Lesions in Brain MRI using constrained
  adversarial auto-encoders
Unsupervised Detection of Lesions in Brain MRI using constrained adversarial auto-encoders
Xiaoran Chen
E. Konukoglu
MedIm
59
264
0
13 Jun 2018
Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain
  MR Images
Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images
Christoph Baur
Benedikt Wiestler
Shadi Albarqouni
Nassir Navab
UQCV
MedIm
52
442
0
12 Apr 2018
An overview of deep learning based methods for unsupervised and
  semi-supervised anomaly detection in videos
An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos
Dilip Ravi Kiran
Mathew Thomas
Ranjith Parakkal
64
448
0
09 Jan 2018
SmoothGrad: removing noise by adding noise
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
199
2,221
0
12 Jun 2017
Unsupervised Anomaly Detection with Generative Adversarial Networks to
  Guide Marker Discovery
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedIm
GAN
94
2,225
0
17 Mar 2017
Detecting Cancer Metastases on Gigapixel Pathology Images
Detecting Cancer Metastases on Gigapixel Pathology Images
Yun-Hui Liu
Krishna Gadepalli
Mohammad Norouzi
George E. Dahl
Timo Kohlberger
...
Phil Q. Nelson
G. Corrado
J. Hipp
L. Peng
Martin C. Stumpe
MedIm
LM&MA
65
641
0
03 Mar 2017
Learning Hierarchical Features from Generative Models
Learning Hierarchical Features from Generative Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
BDL
GAN
OOD
DRL
36
74
0
27 Feb 2017
Context Encoders: Feature Learning by Inpainting
Context Encoders: Feature Learning by Inpainting
Deepak Pathak
Philipp Krahenbuhl
Jeff Donahue
Trevor Darrell
Alexei A. Efros
SSL
67
5,287
0
25 Apr 2016
Breaking the Curse of Dimensionality with Convex Neural Networks
Breaking the Curse of Dimensionality with Convex Neural Networks
Francis R. Bach
172
706
0
30 Dec 2014
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
236
4,665
0
21 Dec 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
426
16,944
0
20 Dec 2013
What Regularized Auto-Encoders Learn from the Data Generating
  Distribution
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Guillaume Alain
Yoshua Bengio
OOD
DRL
64
501
0
18 Nov 2012
1