Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.04529
Cited By
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
11 December 2018
Aaron Defazio
Léon Bottou
UQCV
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Ineffectiveness of Variance Reduced Optimization for Deep Learning"
22 / 22 papers shown
Title
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Gleb Molodtsov
Daniil Medyakov
Sergey Skorik
Nikolas Khachaturov
Shahane Tigranyan
Vladimir Aletov
A. Avetisyan
Martin Takáč
Aleksandr Beznosikov
AAML
35
0
0
12 May 2025
Convergence Conditions for Stochastic Line Search Based Optimization of Over-parametrized Models
Matteo Lapucci
Davide Pucci
35
1
0
06 Aug 2024
Deep Companion Learning: Enhancing Generalization Through Historical Consistency
Ruizhao Zhu
Venkatesh Saligrama
FedML
34
0
0
26 Jul 2024
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Aaron Mishkin
Mert Pilanci
Mark Schmidt
64
1
0
03 Apr 2024
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
33
1
0
09 Nov 2023
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuan-Fu Ding
Jingyang Li
Kim-Chuan Toh
30
8
0
26 Jun 2023
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
27
20
0
14 Feb 2023
On the effectiveness of partial variance reduction in federated learning with heterogeneous data
Bo-wen Li
Mikkel N. Schmidt
T. S. Alstrøm
Sebastian U. Stich
FedML
37
9
0
05 Dec 2022
Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation
An Xu
Wenqi Li
Pengfei Guo
Dong Yang
H. Roth
Ali Hatamizadeh
Can Zhao
Daguang Xu
Heng-Chiao Huang
Ziyue Xu
FedML
36
51
0
18 Mar 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
26
8
0
18 Feb 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction
Zih-Syuan Huang
Ching-pei Lee
AAML
46
9
0
05 Dec 2021
Secure Distributed Training at Scale
Eduard A. Gorbunov
Alexander Borzunov
Michael Diskin
Max Ryabinin
FedML
21
15
0
21 Jun 2021
Variance Reduced Training with Stratified Sampling for Forecasting Models
Yucheng Lu
Youngsuk Park
Lifan Chen
Bernie Wang
Christopher De Sa
Dean Phillips Foster
AI4TS
38
17
0
02 Mar 2021
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark W. Schmidt
Simon Lacoste-Julien
18
18
0
18 Feb 2021
Iterative Averaging in the Quest for Best Test Error
Diego Granziol
Xingchen Wan
Samuel Albanie
Stephen J. Roberts
10
3
0
02 Mar 2020
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
15
1,391
0
29 Feb 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
14
168
0
19 Dec 2019
Lookahead Optimizer: k steps forward, 1 step back
Michael Ruogu Zhang
James Lucas
Geoffrey E. Hinton
Jimmy Ba
ODL
33
719
0
19 Jul 2019
Why gradient clipping accelerates training: A theoretical justification for adaptivity
Junzhe Zhang
Tianxing He
S. Sra
Ali Jadbabaie
30
442
0
28 May 2019
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova
Gauthier Gidel
F. Fleuret
Simon Lacoste-Julien
25
134
0
18 Apr 2019
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
54
429
0
22 Aug 2018
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
79
317
0
18 Feb 2014
1