ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.04155
15
130

Vision-based Navigation with Language-based Assistance via Imitation Learning with Indirect Intervention

10 December 2018
Khanh Nguyen
Debadeepta Dey
Chris Brockett
W. Dolan
    LM&Ro
ArXivPDFHTML
Abstract

We present Vision-based Navigation with Language-based Assistance (VNLA), a grounded vision-language task where an agent with visual perception is guided via language to find objects in photorealistic indoor environments. The task emulates a real-world scenario in that (a) the requester may not know how to navigate to the target objects and thus makes requests by only specifying high-level end-goals, and (b) the agent is capable of sensing when it is lost and querying an advisor, who is more qualified at the task, to obtain language subgoals to make progress. To model language-based assistance, we develop a general framework termed Imitation Learning with Indirect Intervention (I3L), and propose a solution that is effective on the VNLA task. Empirical results show that this approach significantly improves the success rate of the learning agent over other baselines in both seen and unseen environments. Our code and data are publicly available at https://github.com/debadeepta/vnla .

View on arXiv
Comments on this paper