ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.03253
  4. Cited By
Counterfactuals uncover the modular structure of deep generative models

Counterfactuals uncover the modular structure of deep generative models

8 December 2018
M. Besserve
Arash Mehrjou
Rémy Sun
Bernhard Schölkopf
    DRL
    BDL
    DiffM
ArXivPDFHTML

Papers citing "Counterfactuals uncover the modular structure of deep generative models"

28 / 28 papers shown
Title
Interpreting Low-level Vision Models with Causal Effect Maps
Interpreting Low-level Vision Models with Causal Effect Maps
Jinfan Hu
Jinjin Gu
Shiyao Yu
Fanghua Yu
Zheyuan Li
Zhiyuan You
Chaochao Lu
Chao Dong
CML
152
2
0
29 Jul 2024
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
303
10,591
0
17 Feb 2020
Towards a Definition of Disentangled Representations
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCL
DRL
92
480
0
05 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
111
1,466
0
29 Nov 2018
Robustly Disentangled Causal Mechanisms: Validating Deep Representations
  for Interventional Robustness
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
CML
OOD
DRL
105
162
0
31 Oct 2018
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock
Jeff Donahue
Karen Simonyan
237
5,381
0
28 Sep 2018
Modeling Visual Context is Key to Augmenting Object Detection Datasets
Modeling Visual Context is Key to Augmenting Object Detection Datasets
Nikita Dvornik
Julien Mairal
Cordelia Schmid
72
244
0
19 Jul 2018
Assessing Generative Models via Precision and Recall
Assessing Generative Models via Precision and Recall
Mehdi S. M. Sajjadi
Olivier Bachem
Mario Lucic
Olivier Bousquet
Sylvain Gelly
EGVM
73
575
0
31 May 2018
Learning Independent Causal Mechanisms
Learning Independent Causal Mechanisms
Giambattista Parascandolo
Niki Kilbertus
Mateo Rojas-Carulla
Bernhard Schölkopf
CML
OOD
DRL
52
182
0
04 Dec 2017
Examining CNN Representations with respect to Dataset Bias
Examining CNN Representations with respect to Dataset Bias
Quanshi Zhang
Wenguan Wang
Song-Chun Zhu
SSL
FAtt
51
104
0
29 Oct 2017
Dynamic Routing Between Capsules
Dynamic Routing Between Capsules
S. Sabour
Nicholas Frosst
Geoffrey E. Hinton
140
4,589
0
26 Oct 2017
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
  Equilibrium
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
M. Heusel
Hubert Ramsauer
Thomas Unterthiner
Bernhard Nessler
Sepp Hochreiter
72
465
0
26 Jun 2017
Group invariance principles for causal generative models
Group invariance principles for causal generative models
M. Besserve
Naji Shajarisales
Bernhard Schölkopf
Dominik Janzing
55
49
0
05 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,517
0
11 Apr 2017
BEGAN: Boundary Equilibrium Generative Adversarial Networks
BEGAN: Boundary Equilibrium Generative Adversarial Networks
David Berthelot
Tom Schumm
Luke Metz
GAN
100
1,153
0
31 Mar 2017
Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning
Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning
Quanshi Zhang
Ruiming Cao
Ying Nian Wu
Song-Chun Zhu
46
70
0
14 Nov 2016
Disentangling factors of variation in deep representations using
  adversarial training
Disentangling factors of variation in deep representations using adversarial training
Michaël Mathieu
Jiaqi Zhao
Pablo Sprechmann
Aditya A. Ramesh
Yann LeCun
DRL
CML
89
490
0
10 Nov 2016
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
418
5,367
0
05 Nov 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
157
4,232
0
12 Jun 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on
  Learning
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
348
14,223
0
23 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
243
13,989
0
19 Nov 2015
A Neural Algorithm of Artistic Style
A Neural Algorithm of Artistic Style
Leon A. Gatys
Alexander S. Ecker
Matthias Bethge
GAN
79
2,855
0
26 Aug 2015
Inverting Visual Representations with Convolutional Networks
Inverting Visual Representations with Convolutional Networks
Alexey Dosovitskiy
Thomas Brox
SSL
FAtt
61
665
0
09 Jun 2015
Deep Convolutional Inverse Graphics Network
Deep Convolutional Inverse Graphics Network
Tejas D. Kulkarni
William F. Whitney
Pushmeet Kohli
J. Tenenbaum
DRL
BDL
91
929
0
11 Mar 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
224
8,391
0
28 Nov 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
464
15,861
0
12 Nov 2013
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
220
12,422
0
24 Jun 2012
1