ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02706
  4. Cited By
Coarse-Graining Auto-Encoders for Molecular Dynamics

Coarse-Graining Auto-Encoders for Molecular Dynamics

6 December 2018
Wujie Wang
Rafael Gómez-Bombarelli
    AI4CE
ArXivPDFHTML

Papers citing "Coarse-Graining Auto-Encoders for Molecular Dynamics"

10 / 10 papers shown
Title
Predicting solvation free energies with an implicit solvent machine learning potential
Predicting solvation free energies with an implicit solvent machine learning potential
Sebastien Röcken
A. F. Burnet
Julija Zavadlav
AI4Cl
AI4CE
95
4
0
31 May 2024
Differentiable Molecular Simulations for Control and Learning
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
133
49
0
27 Feb 2020
Machine Learning of coarse-grained Molecular Dynamics Force Fields
Machine Learning of coarse-grained Molecular Dynamics Force Fields
Jiang Wang
Simon Olsson
C. Wehmeyer
Adria Pérez
Nicholas E. Charron
Gianni De Fabritiis
Frank Noe
C. Clementi
AI4CE
18
401
0
04 Dec 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
284
1,358
0
12 Feb 2018
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
139
4,928
0
02 Nov 2017
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
140
358
0
30 Oct 2017
GANS for Sequences of Discrete Elements with the Gumbel-softmax
  Distribution
GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution
Matt J. Kusner
José Miguel Hernández-Lobato
GAN
53
327
0
12 Nov 2016
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
111
2,911
0
07 Oct 2016
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
63
2,352
0
19 Nov 2015
Deep Learning and the Information Bottleneck Principle
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
79
1,570
0
09 Mar 2015
1