ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02415
  4. Cited By
Self-supervised Learning of Dense Shape Correspondence

Self-supervised Learning of Dense Shape Correspondence

6 December 2018
Oshri Halimi
Or Litany
Emanuele Rodolà
A. Bronstein
Ron Kimmel
    3DPC
ArXivPDFHTML

Papers citing "Self-supervised Learning of Dense Shape Correspondence"

9 / 9 papers shown
Title
Non-Rigid Puzzles
Non-Rigid Puzzles
Or Litany
Emanuele Rodolà
Alexander M. Bronstein
Michael M. Bronstein
Daniel Cremers
3DV
21
76
0
26 Nov 2020
3D-CODED : 3D Correspondences by Deep Deformation
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
144
328
0
13 Jun 2018
Efficient Deformable Shape Correspondence via Kernel Matching
Efficient Deformable Shape Correspondence via Kernel Matching
Zorah Lähner
Matthias Vestner
A. Boyarski
Or Litany
Ron Slossberg
...
Emanuele Rodolà
A. Bronstein
M. Bronstein
Ron Kimmel
Daniel Cremers
3DPC
31
120
0
25 Jul 2017
Deep Functional Maps: Structured Prediction for Dense Shape
  Correspondence
Deep Functional Maps: Structured Prediction for Dense Shape Correspondence
Or Litany
Tal Remez
Emanuele Rodolà
A. Bronstein
M. Bronstein
3DPC
100
284
0
27 Apr 2017
Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel
  Density Estimation in the Product Space
Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel Density Estimation in the Product Space
Matthias Vestner
R. Litman
Emanuele Rodolà
A. Bronstein
Daniel Cremers
60
130
0
03 Jan 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
364
1,817
0
25 Nov 2016
Learning shape correspondence with anisotropic convolutional neural
  networks
Learning shape correspondence with anisotropic convolutional neural networks
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
M. Bronstein
3DPC
117
506
0
20 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
On the optimality of shape and data representation in the spectral
  domain
On the optimality of shape and data representation in the spectral domain
Y. Aflalo
H. Brezis
Ron Kimmel
28
85
0
15 Sep 2014
1