ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.01285
  4. Cited By
Rare Event Detection using Disentangled Representation Learning

Rare Event Detection using Disentangled Representation Learning

4 December 2018
Ryuhei Hamaguchi
Ken Sakurada
Ryosuke Nakamura
    DRL
ArXiv (abs)PDFHTML

Papers citing "Rare Event Detection using Disentangled Representation Learning"

18 / 18 papers shown
Title
Learning Actionable World Models for Industrial Process Control
Learning Actionable World Models for Industrial Process Control
Peng Yan
Ahmed Abdulkadir
Gerrit A. Schatte
Giulia Anguzzi
Joonsu Gha
Nikola Pascher
Matthias Rosenthal
Yunlong Gao
Benjamin Grewe
Thilo Stadelmann
DRLAI4CE
85
0
0
03 Mar 2025
Clustering and Unsupervised Anomaly Detection with L2 Normalized Deep
  Auto-Encoder Representations
Clustering and Unsupervised Anomaly Detection with L2 Normalized Deep Auto-Encoder Representations
Çağlar Aytekin
Xingyang Ni
Francesco Cricri
Emre B. Aksu
SSLUQCV
56
146
0
01 Feb 2018
Multi-View Data Generation Without View Supervision
Multi-View Data Generation Without View Supervision
Mickaël Chen
Ludovic Denoyer
Thierry Artières
SyDa
52
19
0
01 Nov 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRLCoGe
124
362
0
01 Jun 2017
Multi-Level Variational Autoencoder: Learning Disentangled
  Representations from Grouped Observations
Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations
Diane Bouchacourt
Ryota Tomioka
Sebastian Nowozin
BDLOODDRL
56
313
0
24 May 2017
Learning Hierarchical Features from Generative Models
Learning Hierarchical Features from Generative Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
BDLGANOODDRL
48
74
0
27 Feb 2017
Disentangling factors of variation in deep representations using
  adversarial training
Disentangling factors of variation in deep representations using adversarial training
Michaël Mathieu
Jiaqi Zhao
Pablo Sprechmann
Aditya A. Ramesh
Yann LeCun
DRLCML
92
490
0
10 Nov 2016
Conditional Image Synthesis With Auxiliary Classifier GANs
Conditional Image Synthesis With Auxiliary Classifier GANs
Augustus Odena
C. Olah
Jonathon Shlens
GAN
430
3,215
0
30 Oct 2016
Domain Separation Networks
Domain Separation Networks
Konstantinos Bousmalis
George Trigeorgis
N. Silberman
Dilip Krishnan
D. Erhan
OOD
109
1,450
0
22 Aug 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
159
4,235
0
12 Jun 2016
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
113
2,362
0
19 Nov 2015
Stereo Matching by Training a Convolutional Neural Network to Compare
  Image Patches
Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches
Jure Zbontar
Yann LeCun
3DV
143
1,388
0
20 Oct 2015
Learning to Compare Image Patches via Convolutional Neural Networks
Learning to Compare Image Patches via Convolutional Neural Networks
Sergey Zagoruyko
N. Komodakis
SSL
89
1,436
0
14 Apr 2015
Deep Convolutional Inverse Graphics Network
Deep Convolutional Inverse Graphics Network
Tejas D. Kulkarni
William F. Whitney
Pushmeet Kohli
J. Tenenbaum
DRLBDL
103
929
0
11 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,386
0
04 Sep 2014
Deep Learning Face Representation by Joint Identification-Verification
Deep Learning Face Representation by Joint Identification-Verification
Yi Sun
Xiaogang Wang
Xiaoou Tang
CVBM
224
2,246
0
18 Jun 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,929
0
20 Dec 2013
1