ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.12359
  4. Cited By
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

29 November 2018
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
    OOD
ArXivPDFHTML

Papers citing "Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations"

50 / 330 papers shown
Title
A Short Survey of Systematic Generalization
A Short Survey of Systematic Generalization
Yuanpeng Li
AI4CE
43
1
0
22 Nov 2022
Multi-Directional Subspace Editing in Style-Space
Multi-Directional Subspace Editing in Style-Space
Chen Naveh
Yacov Hel-Or
CVBM
33
0
0
21 Nov 2022
Disentangled Representation Learning
Disentangled Representation Learning
Xin Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
37
78
0
21 Nov 2022
Exploiting Personalized Invariance for Better Out-of-distribution
  Generalization in Federated Learning
Exploiting Personalized Invariance for Better Out-of-distribution Generalization in Federated Learning
Xueyang Tang
Song Guo
Jie Zhang
FedML
OODD
OOD
36
3
0
21 Nov 2022
Predicting Human Mobility via Self-supervised Disentanglement Learning
Predicting Human Mobility via Self-supervised Disentanglement Learning
Qiang Gao
Jinyung Hong
Xovee Xu
Ping Kuang
Fan Zhou
Goce Trajcevski
26
12
0
17 Nov 2022
Mechanistic Mode Connectivity
Mechanistic Mode Connectivity
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
32
45
0
15 Nov 2022
Disentangling Variational Autoencoders
Disentangling Variational Autoencoders
Rafael Pastrana
CoGe
DRL
27
4
0
14 Nov 2022
Distributional Shift Adaptation using Domain-Specific Features
Distributional Shift Adaptation using Domain-Specific Features
Anique Tahir
Lu Cheng
Ruocheng Guo
Huan Liu
VLM
TTA
OOD
OODD
34
2
0
09 Nov 2022
Learning Causal Representations of Single Cells via Sparse Mechanism
  Shift Modeling
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OOD
CML
DRL
36
35
0
07 Nov 2022
Disentangling Content and Motion for Text-Based Neural Video
  Manipulation
Disentangling Content and Motion for Text-Based Neural Video Manipulation
Levent Karacan
Tolga Kerimouglu
.Ismail .Inan
Tolga Birdal
Erkut Erdem
Aykut Erdem
29
1
0
05 Nov 2022
SelecMix: Debiased Learning by Contradicting-pair Sampling
SelecMix: Debiased Learning by Contradicting-pair Sampling
Inwoo Hwang
Sangjun Lee
Yunhyeok Kwak
Seong Joon Oh
Damien Teney
Jin-Hwa Kim
Byoung-Tak Zhang
OOD
334
28
0
04 Nov 2022
FUNCK: Information Funnels and Bottlenecks for Invariant Representation
  Learning
FUNCK: Information Funnels and Bottlenecks for Invariant Representation Learning
João Machado de Freitas
Bernhard C. Geiger
27
3
0
02 Nov 2022
Neural Systematic Binder
Neural Systematic Binder
Gautam Singh
Yeongbin Kim
Sungjin Ahn
OCL
32
36
0
02 Nov 2022
Disentangled (Un)Controllable Features
Disentangled (Un)Controllable Features
Jacob E. Kooi
Mark Hoogendoorn
Vincent François-Lavet
DRL
27
0
0
31 Oct 2022
A robust estimator of mutual information for deep learning
  interpretability
A robust estimator of mutual information for deep learning interpretability
Davide Piras
H. Peiris
A. Pontzen
Luisa Lucie-Smith
Ningyuan Guo
Brian D. Nord
SSL
DRL
29
15
0
31 Oct 2022
Temporally Disentangled Representation Learning
Temporally Disentangled Representation Learning
Weiran Yao
Guangyi Chen
Kun Zhang
CML
BDL
OOD
32
48
0
24 Oct 2022
Representation Learning with Diffusion Models
Representation Learning with Diffusion Models
Jeremias Traub
DiffM
32
8
0
20 Oct 2022
Improving aircraft performance using machine learning: a review
Improving aircraft performance using machine learning: a review
S. L. Clainche
E. Ferrer
Sam Gibson
Elisabeth Cross
A. Parente
Ricardo Vinuesa
AI4CE
36
93
0
20 Oct 2022
DOT-VAE: Disentangling One Factor at a Time
DOT-VAE: Disentangling One Factor at a Time
Vaishnavi Patil
Matthew Evanusa
J. JáJá
CoGe
DRL
CML
23
1
0
19 Oct 2022
COFFEE: Counterfactual Fairness for Personalized Text Generation in
  Explainable Recommendation
COFFEE: Counterfactual Fairness for Personalized Text Generation in Explainable Recommendation
Nan Wang
Qifan Wang
Yi-Chia Wang
Maziar Sanjabi
Jingzhou Liu
Hamed Firooz
Hongning Wang
Shaoliang Nie
28
6
0
14 Oct 2022
Env-Aware Anomaly Detection: Ignore Style Changes, Stay True to Content!
Env-Aware Anomaly Detection: Ignore Style Changes, Stay True to Content!
Stefan Smeu
Elena Burceanu
Andrei Liviu Nicolicioiu
Emanuela Haller
35
4
0
06 Oct 2022
Collecting The Puzzle Pieces: Disentangled Self-Driven Human Pose
  Transfer by Permuting Textures
Collecting The Puzzle Pieces: Disentangled Self-Driven Human Pose Transfer by Permuting Textures
Nannan Li
Kevin J. Shih
Bryan A. Plummer
29
7
0
04 Oct 2022
Learning to Collocate Visual-Linguistic Neural Modules for Image
  Captioning
Learning to Collocate Visual-Linguistic Neural Modules for Image Captioning
Xu Yang
Hanwang Zhang
Chongyang Gao
Jianfei Cai
MLLM
40
10
0
04 Oct 2022
NashAE: Disentangling Representations through Adversarial Covariance
  Minimization
NashAE: Disentangling Representations through Adversarial Covariance Minimization
Eric C. Yeats
Frank Liu
David A. P. Womble
Hai Helen Li
CML
38
10
0
21 Sep 2022
SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent
  Factor Swapping
SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent Factor Swapping
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
SSL
CoGe
DRL
35
4
0
21 Sep 2022
Human Pose Driven Object Effects Recommendation
Human Pose Driven Object Effects Recommendation
Zhaoxin Fan
Feng Li
Hongyan Liu
Jun He
Xiaoyong Du
11
2
0
17 Sep 2022
Gromov-Wasserstein Autoencoders
Gromov-Wasserstein Autoencoders
Nao Nakagawa
Ren Togo
Takahiro Ogawa
Miki Haseyama
GAN
DRL
26
11
0
15 Sep 2022
Weakly Supervised Invariant Representation Learning Via Disentangling
  Known and Unknown Nuisance Factors
Weakly Supervised Invariant Representation Learning Via Disentangling Known and Unknown Nuisance Factors
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
32
1
0
15 Sep 2022
3DFaceShop: Explicitly Controllable 3D-Aware Portrait Generation
3DFaceShop: Explicitly Controllable 3D-Aware Portrait Generation
Junshu Tang
Bo Zhang
Binxin Yang
Ting Zhang
Dong Chen
Lizhuang Ma
Fang Wen
3DH
35
18
0
12 Sep 2022
Modular Representations for Weak Disentanglement
Modular Representations for Weak Disentanglement
Andrea Valenti
D. Bacciu
36
0
0
12 Sep 2022
On a Built-in Conflict between Deep Learning and Systematic
  Generalization
On a Built-in Conflict between Deep Learning and Systematic Generalization
Yuanpeng Li
OOD
45
0
0
24 Aug 2022
Deception for Cyber Defence: Challenges and Opportunities
Deception for Cyber Defence: Challenges and Opportunities
David Liebowitz
Surya Nepal
Kristen Moore
Cody James Christopher
S. Kanhere
David D. Nguyen
Roelien C. Timmer
Michael Longland
Keerth Rathakumar
39
10
0
15 Aug 2022
HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by
  Maximising Approximated Mutual Information
HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by Maximising Approximated Mutual Information
Xiao Liu
Spyridon Thermos
Pedro Sanchez
Alison Q. OÑeil
Sotirios A. Tsaftaris
39
1
0
06 Aug 2022
Equivariant Disentangled Transformation for Domain Generalization under
  Combination Shift
Equivariant Disentangled Transformation for Domain Generalization under Combination Shift
Yivan Zhang
Jindong Wang
Xingxu Xie
Masashi Sugiyama
OOD
42
1
0
03 Aug 2022
Interpreting Latent Spaces of Generative Models for Medical Images using
  Unsupervised Methods
Interpreting Latent Spaces of Generative Models for Medical Images using Unsupervised Methods
Julian Schon
Raghavendra Selvan
Jens Petersen
MedIm
26
4
0
20 Jul 2022
Invariant Feature Learning for Generalized Long-Tailed Classification
Invariant Feature Learning for Generalized Long-Tailed Classification
Kaihua Tang
Mingyuan Tao
Jiaxin Qi
Zhenguang Liu
Hanwang Zhang
VLM
32
52
0
19 Jul 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
60
71
0
19 Jul 2022
Comparing the latent space of generative models
Comparing the latent space of generative models
Andrea Asperti
Valerio Tonelli
DRL
26
12
0
14 Jul 2022
Equivariant Representation Learning via Class-Pose Decomposition
Equivariant Representation Learning via Class-Pose Decomposition
Giovanni Luca Marchetti
Gustaf Tegnér
Anastasiia Varava
Danica Kragic
DRL
35
14
0
07 Jul 2022
Predicting is not Understanding: Recognizing and Addressing
  Underspecification in Machine Learning
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
38
29
0
06 Jul 2022
GLANCE: Global to Local Architecture-Neutral Concept-based Explanations
GLANCE: Global to Local Architecture-Neutral Concept-based Explanations
Avinash Kori
Ben Glocker
Francesca Toni
30
6
0
05 Jul 2022
Factorizing Knowledge in Neural Networks
Factorizing Knowledge in Neural Networks
Xingyi Yang
Jingwen Ye
Xinchao Wang
MoMe
47
121
0
04 Jul 2022
When are Post-hoc Conceptual Explanations Identifiable?
When are Post-hoc Conceptual Explanations Identifiable?
Tobias Leemann
Michael Kirchhof
Yao Rong
Enkelejda Kasneci
Gjergji Kasneci
50
10
0
28 Jun 2022
Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive
  Learning
Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning
Cheng Tan
Zhangyang Gao
Lirong Wu
Yongjie Xu
Jun Xia
Siyuan Li
Stan Z. Li
46
107
0
24 Jun 2022
Disentangling representations in Restricted Boltzmann Machines without
  adversaries
Disentangling representations in Restricted Boltzmann Machines without adversaries
Jorge Fernandez-de-Cossio-Diaz
Simona Cocco
R. Monasson
DRL
40
13
0
23 Jun 2022
Identifiability of deep generative models without auxiliary information
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
26
49
0
20 Jun 2022
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
Yujia Zheng
Ignavier Ng
Kun Zhang
CML
21
59
0
15 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
35
19
0
06 Jun 2022
Weakly Supervised Representation Learning with Sparse Perturbations
Weakly Supervised Representation Learning with Sparse Perturbations
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
SSL
35
58
0
02 Jun 2022
Compressed Hierarchical Representations for Multi-Task Learning and Task
  Clustering
Compressed Hierarchical Representations for Multi-Task Learning and Task Clustering
João Machado de Freitas
Sebastian Berg
Bernhard C. Geiger
Manfred Mücke
16
1
0
31 May 2022
Previous
1234567
Next