ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.10800
  4. Cited By
Probabilistic Object Detection: Definition and Evaluation

Probabilistic Object Detection: Definition and Evaluation

27 November 2018
David Hall
Feras Dayoub
John Skinner
Haoyang Zhang
Dimity Miller
Peter Corke
G. Carneiro
A. Angelova
Niko Sünderhauf
    UQCV
ArXivPDFHTML

Papers citing "Probabilistic Object Detection: Definition and Evaluation"

14 / 64 papers shown
Title
Multi-Agent Active Search using Realistic Depth-Aware Noise Model
Multi-Agent Active Search using Realistic Depth-Aware Noise Model
Ramina Ghods
W. Durkin
J. Schneider
16
14
0
09 Nov 2020
The Robotic Vision Scene Understanding Challenge
The Robotic Vision Scene Understanding Challenge
David Hall
Ben Talbot
S. Bista
Haoyang Zhang
Rohan Smith
Feras Dayoub
Niko Sünderhauf
21
13
0
11 Sep 2020
Stochastic-YOLO: Efficient Probabilistic Object Detection under Dataset
  Shifts
Stochastic-YOLO: Efficient Probabilistic Object Detection under Dataset Shifts
Tiago Azevedo
R. D. Jong
Matthew Mattina
Partha P. Maji
UQCV
8
15
0
07 Sep 2020
Probabilistic Deep Learning for Instance Segmentation
Probabilistic Deep Learning for Instance Segmentation
J. L. Rumberger
Lisa Mais
Dagmar Kainmueller
UQCV
SSeg
8
9
0
24 Aug 2020
Representation Learning with Video Deep InfoMax
Representation Learning with Video Deep InfoMax
R. Devon Hjelm
Philip Bachman
SSL
MDE
16
28
0
27 Jul 2020
Inferring Spatial Uncertainty in Object Detection
Inferring Spatial Uncertainty in Object Detection
Zining Wang
Di Feng
Yiyang Zhou
Lars Rosenbaum
Fabian Timm
Klaus C. J. Dietmayer
M. Tomizuka
Wei Zhan
16
27
0
07 Mar 2020
MonoLayout: Amodal scene layout from a single image
MonoLayout: Amodal scene layout from a single image
Kaustubh Mani
Swapnil Daga
Shubhika Garg
N. S. Shankar
Krishna Murthy Jatavallabhula
K. M. Krishna
6
79
0
19 Feb 2020
Empirical Upper Bound in Object Detection and More
Empirical Upper Bound in Object Detection and More
Ali Borji
Seyed Mehdi Iranmanesh
VLM
ObjD
14
24
0
27 Nov 2019
SMArT: Training Shallow Memory-aware Transformers for Robotic
  Explainability
SMArT: Training Shallow Memory-aware Transformers for Robotic Explainability
Marcella Cornia
Lorenzo Baraldi
Rita Cucchiara
6
27
0
07 Oct 2019
The Probabilistic Object Detection Challenge
The Probabilistic Object Detection Challenge
John Skinner
David Hall
Haoyang Zhang
Feras Dayoub
Niko Sünderhauf
AAML
6
9
0
19 Mar 2019
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object
  Detectors
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors
Ali Harakeh
Michael H. W. Smart
Steven L. Waslander
BDL
UQCV
18
115
0
09 Mar 2019
Deep Multi-modal Object Detection and Semantic Segmentation for
  Autonomous Driving: Datasets, Methods, and Challenges
Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
Di Feng
Christian Haase-Schuetz
Lars Rosenbaum
Heinz Hertlein
Claudius Gläser
Fabian Duffhauss
W. Wiesbeck
Klaus C. J. Dietmayer
3DPC
27
985
0
21 Feb 2019
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
Previous
12