ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.08357
  4. Cited By
Learning deep kernels for exponential family densities

Learning deep kernels for exponential family densities

20 November 2018
W. Li
Danica J. Sutherland
Heiko Strathmann
Arthur Gretton
    BDL
ArXivPDFHTML

Papers citing "Learning deep kernels for exponential family densities"

24 / 24 papers shown
Title
Composite Goodness-of-fit Tests with Kernels
Composite Goodness-of-fit Tests with Kernels
Oscar Key
Arthur Gretton
F. Briol
T. Fernandez
68
16
0
19 Nov 2021
Informative Features for Model Comparison
Informative Features for Model Comparison
Wittawat Jitkrittum
Heishiro Kanagawa
Patsorn Sangkloy
James Hays
Bernhard Schölkopf
Arthur Gretton
52
27
0
27 Oct 2018
On gradient regularizers for MMD GANs
On gradient regularizers for MMD GANs
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
64
95
0
29 May 2018
Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by
  Minimizing Predictive Variance
Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance
Neal Jean
Sang Michael Xie
Stefano Ermon
BDL
SSL
54
76
0
26 May 2018
Deep Energy Estimator Networks
Deep Energy Estimator Networks
Saeed Saremi
Arash Mehrjou
Bernhard Schölkopf
Aapo Hyvarinen
50
74
0
21 May 2018
Demystifying MMD GANs
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
130
1,490
0
04 Jan 2018
Kernel Conditional Exponential Family
Kernel Conditional Exponential Family
Michael Arbel
Arthur Gretton
50
25
0
15 Nov 2017
Sharpening Jensen's Inequality
Sharpening Jensen's Inequality
Jason Liao
Arthur Berg
35
73
0
26 Jul 2017
The Cramer Distance as a Solution to Biased Wasserstein Gradients
The Cramer Distance as a Solution to Biased Wasserstein Gradients
Marc G. Bellemare
Ivo Danihelka
Will Dabney
S. Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
GAN
70
344
0
30 May 2017
MMD GAN: Towards Deeper Understanding of Moment Matching Network
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
GAN
66
721
0
24 May 2017
A Linear-Time Kernel Goodness-of-Fit Test
A Linear-Time Kernel Goodness-of-Fit Test
Wittawat Jitkrittum
Wenkai Xu
Z. Szabó
Kenji Fukumizu
Arthur Gretton
62
104
0
22 May 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
195
1,351
0
19 May 2017
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
252
3,693
0
26 May 2016
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
187
328
0
09 Feb 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
451
2,566
0
25 Jan 2016
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
234
885
0
06 Nov 2015
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential
  Families
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
Heiko Strathmann
Dino Sejdinovic
Samuel Livingstone
Z. Szabó
Arthur Gretton
BDL
63
76
0
08 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
302
4,167
0
21 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
Score Function Features for Discriminative Learning
Score Function Features for Discriminative Learning
Majid Janzamin
Hanie Sedghi
Anima Anandkumar
80
43
0
19 Dec 2014
Clustering via Mode Seeking by Direct Estimation of the Gradient of a
  Log-Density
Clustering via Mode Seeking by Direct Estimation of the Gradient of a Log-Density
Hiroaki Sasaki
Aapo Hyvarinen
Masashi Sugiyama
58
46
0
20 Apr 2014
Density Estimation in Infinite Dimensional Exponential Families
Density Estimation in Infinite Dimensional Exponential Families
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Aapo Hyvarinen
Revant Kumar
63
125
0
12 Dec 2013
RNADE: The real-valued neural autoregressive density-estimator
RNADE: The real-valued neural autoregressive density-estimator
Benigno Uria
Iain Murray
Hugo Larochelle
98
238
0
02 Jun 2013
Interpretation and Generalization of Score Matching
Interpretation and Generalization of Score Matching
Siwei Lyu
100
146
0
09 May 2012
1