ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.07557
  4. Cited By
Neural Joint Source-Channel Coding

Neural Joint Source-Channel Coding

19 November 2018
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
ArXivPDFHTML

Papers citing "Neural Joint Source-Channel Coding"

41 / 41 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
321
10,591
0
17 Feb 2020
Uncertainty Autoencoders: Learning Compressed Representations via
  Variational Information Maximization
Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization
Aditya Grover
Stefano Ermon
37
53
0
26 Dec 2018
Learning deep representations by mutual information estimation and
  maximization
Learning deep representations by mutual information estimation and maximization
R. Devon Hjelm
A. Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
SSL
DRL
288
2,661
0
20 Aug 2018
Deepcode: Feedback Codes via Deep Learning
Deepcode: Feedback Codes via Deep Learning
Hyeji Kim
Yihan Jiang
Sreeram Kannan
Sewoong Oh
Pramod Viswanath
43
142
0
02 Jul 2018
The Information Autoencoding Family: A Lagrangian Perspective on Latent
  Variable Generative Models
The Information Autoencoding Family: A Lagrangian Perspective on Latent Variable Generative Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
GAN
33
20
0
18 Jun 2018
Theory and Experiments on Vector Quantized Autoencoders
Theory and Experiments on Vector Quantized Autoencoders
Aurko Roy
Ashish Vaswani
Arvind Neelakantan
Niki Parmar
62
87
0
28 May 2018
Communication Algorithms via Deep Learning
Communication Algorithms via Deep Learning
Hyeji Kim
Yihan Jiang
Ranvir Rana
Sreeram Kannan
Sewoong Oh
Pramod Viswanath
37
216
0
23 May 2018
Amortized Inference Regularization
Amortized Inference Regularization
Rui Shu
Hung Bui
Shengjia Zhao
Mykel J. Kochenderfer
Stefano Ermon
DRL
42
82
0
23 May 2018
Variational Rejection Sampling
Variational Rejection Sampling
Aditya Grover
Ramki Gummadi
Miguel Lazaro-Gredilla
Dale Schuurmans
Stefano Ermon
BDL
106
32
0
05 Apr 2018
Deep Learning for Joint Source-Channel Coding of Text
Deep Learning for Joint Source-Channel Coding of Text
Nariman Farsad
Milind Rao
Andrea J. Goldsmith
51
348
0
19 Feb 2018
Discrete Autoencoders for Sequence Models
Discrete Autoencoders for Sequence Models
Lukasz Kaiser
Samy Bengio
BDL
57
50
0
29 Jan 2018
Variational Walkback: Learning a Transition Operator as a Stochastic
  Recurrent Net
Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net
Anirudh Goyal
Nan Rosemary Ke
Surya Ganguli
Yoshua Bengio
DiffM
119
55
0
07 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
208
4,989
0
02 Nov 2017
Fixing a Broken ELBO
Fixing a Broken ELBO
Alexander A. Alemi
Ben Poole
Ian S. Fischer
Joshua V. Dillon
Rif A. Saurous
Kevin Patrick Murphy
DRL
BDL
55
80
0
01 Nov 2017
Backpropagation through the Void: Optimizing control variates for
  black-box gradient estimation
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
92
300
0
31 Oct 2017
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
79
445
0
07 Jun 2017
REBAR: Low-variance, unbiased gradient estimates for discrete latent
  variable models
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
193
282
0
21 Mar 2017
Generative Compression
Generative Compression
Shibani Santurkar
David Budden
Nir Shavit
VGen
DiffM
GAN
95
189
0
04 Mar 2017
Lossy Image Compression with Compressive Autoencoders
Lossy Image Compression with Compressive Autoencoders
Lucas Theis
Wenzhe Shi
Andrew Cunningham
Ferenc Huszár
62
1,054
0
01 Mar 2017
Learning Discrete Representations via Information Maximizing
  Self-Augmented Training
Learning Discrete Representations via Information Maximizing Self-Augmented Training
Weihua Hu
Takeru Miyato
Seiya Tokui
Eiichi Matsumoto
Masashi Sugiyama
76
449
0
28 Feb 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
98
1,714
0
01 Dec 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
125
675
0
08 Nov 2016
End-to-end Optimized Image Compression
End-to-end Optimized Image Compression
Johannes Ballé
Valero Laparra
Eero P. Simoncelli
DRL
77
1,705
0
05 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
281
5,360
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
157
2,529
0
02 Nov 2016
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
162
416
0
11 Oct 2016
The Generalized Reparameterization Gradient
The Generalized Reparameterization Gradient
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
BDL
60
169
0
07 Oct 2016
Discrete Variational Autoencoders
Discrete Variational Autoencoders
J. Rolfe
BDL
DRL
167
258
0
07 Sep 2016
Full Resolution Image Compression with Recurrent Neural Networks
Full Resolution Image Compression with Recurrent Neural Networks
G. Toderici
Damien Vincent
Nick Johnston
S. Hwang
David C. Minnen
Joel Shor
Michele Covell
GAN
47
828
0
18 Aug 2016
Learning to Decode Linear Codes Using Deep Learning
Learning to Decode Linear Codes Using Deep Learning
Eliya Nachmani
Yair Be’ery
D. Burshtein
122
459
0
16 Jul 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
157
4,232
0
12 Jun 2016
Variational inference for Monte Carlo objectives
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
139
289
0
22 Feb 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
243
13,989
0
19 Nov 2015
Variable Rate Image Compression with Recurrent Neural Networks
Variable Rate Image Compression with Recurrent Neural Networks
G. Toderici
Sean M. O'Malley
S. Hwang
Damien Vincent
David C. Minnen
S. Baluja
Michele Covell
Rahul Sukthankar
69
671
0
19 Nov 2015
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
S. Gu
Sergey Levine
Ilya Sutskever
A. Mnih
BDL
49
143
0
16 Nov 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
250
1,245
0
01 Sep 2015
Gradient Estimation Using Stochastic Computation Graphs
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
133
392
0
17 Jun 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
252
6,887
0
12 Mar 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
224
8,391
0
28 Nov 2014
Neural Variational Inference and Learning in Belief Networks
Neural Variational Inference and Learning in Belief Networks
A. Mnih
Karol Gregor
BDL
153
729
0
31 Jan 2014
Deep Generative Stochastic Networks Trainable by Backprop
Deep Generative Stochastic Networks Trainable by Backprop
Yoshua Bengio
Eric Thibodeau-Laufer
Guillaume Alain
J. Yosinski
BDL
127
396
0
05 Jun 2013
1