Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.07557
Cited By
Neural Joint Source-Channel Coding
19 November 2018
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Joint Source-Channel Coding"
41 / 41 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
321
10,591
0
17 Feb 2020
Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization
Aditya Grover
Stefano Ermon
37
53
0
26 Dec 2018
Learning deep representations by mutual information estimation and maximization
R. Devon Hjelm
A. Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
SSL
DRL
288
2,661
0
20 Aug 2018
Deepcode: Feedback Codes via Deep Learning
Hyeji Kim
Yihan Jiang
Sreeram Kannan
Sewoong Oh
Pramod Viswanath
43
142
0
02 Jul 2018
The Information Autoencoding Family: A Lagrangian Perspective on Latent Variable Generative Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
GAN
33
20
0
18 Jun 2018
Theory and Experiments on Vector Quantized Autoencoders
Aurko Roy
Ashish Vaswani
Arvind Neelakantan
Niki Parmar
62
87
0
28 May 2018
Communication Algorithms via Deep Learning
Hyeji Kim
Yihan Jiang
Ranvir Rana
Sreeram Kannan
Sewoong Oh
Pramod Viswanath
37
216
0
23 May 2018
Amortized Inference Regularization
Rui Shu
Hung Bui
Shengjia Zhao
Mykel J. Kochenderfer
Stefano Ermon
DRL
42
82
0
23 May 2018
Variational Rejection Sampling
Aditya Grover
Ramki Gummadi
Miguel Lazaro-Gredilla
Dale Schuurmans
Stefano Ermon
BDL
106
32
0
05 Apr 2018
Deep Learning for Joint Source-Channel Coding of Text
Nariman Farsad
Milind Rao
Andrea J. Goldsmith
51
348
0
19 Feb 2018
Discrete Autoencoders for Sequence Models
Lukasz Kaiser
Samy Bengio
BDL
57
50
0
29 Jan 2018
Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net
Anirudh Goyal
Nan Rosemary Ke
Surya Ganguli
Yoshua Bengio
DiffM
119
55
0
07 Nov 2017
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
208
4,989
0
02 Nov 2017
Fixing a Broken ELBO
Alexander A. Alemi
Ben Poole
Ian S. Fischer
Joshua V. Dillon
Rif A. Saurous
Kevin Patrick Murphy
DRL
BDL
55
80
0
01 Nov 2017
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
92
300
0
31 Oct 2017
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
79
445
0
07 Jun 2017
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
193
282
0
21 Mar 2017
Generative Compression
Shibani Santurkar
David Budden
Nir Shavit
VGen
DiffM
GAN
95
189
0
04 Mar 2017
Lossy Image Compression with Compressive Autoencoders
Lucas Theis
Wenzhe Shi
Andrew Cunningham
Ferenc Huszár
62
1,054
0
01 Mar 2017
Learning Discrete Representations via Information Maximizing Self-Augmented Training
Weihua Hu
Takeru Miyato
Seiya Tokui
Eiichi Matsumoto
Masashi Sugiyama
76
449
0
28 Feb 2017
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
98
1,714
0
01 Dec 2016
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
125
675
0
08 Nov 2016
End-to-end Optimized Image Compression
Johannes Ballé
Valero Laparra
Eero P. Simoncelli
DRL
77
1,705
0
05 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
281
5,360
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
157
2,529
0
02 Nov 2016
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
162
416
0
11 Oct 2016
The Generalized Reparameterization Gradient
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
BDL
60
169
0
07 Oct 2016
Discrete Variational Autoencoders
J. Rolfe
BDL
DRL
167
258
0
07 Sep 2016
Full Resolution Image Compression with Recurrent Neural Networks
G. Toderici
Damien Vincent
Nick Johnston
S. Hwang
David C. Minnen
Joel Shor
Michele Covell
GAN
47
828
0
18 Aug 2016
Learning to Decode Linear Codes Using Deep Learning
Eliya Nachmani
Yair Be’ery
D. Burshtein
122
459
0
16 Jul 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
157
4,232
0
12 Jun 2016
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
139
289
0
22 Feb 2016
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
243
13,989
0
19 Nov 2015
Variable Rate Image Compression with Recurrent Neural Networks
G. Toderici
Sean M. O'Malley
S. Hwang
Damien Vincent
David C. Minnen
S. Baluja
Michele Covell
Rahul Sukthankar
69
671
0
19 Nov 2015
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
S. Gu
Sergey Levine
Ilya Sutskever
A. Mnih
BDL
49
143
0
16 Nov 2015
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
250
1,245
0
01 Sep 2015
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
133
392
0
17 Jun 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
252
6,887
0
12 Mar 2015
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
224
8,391
0
28 Nov 2014
Neural Variational Inference and Learning in Belief Networks
A. Mnih
Karol Gregor
BDL
153
729
0
31 Jan 2014
Deep Generative Stochastic Networks Trainable by Backprop
Yoshua Bengio
Eric Thibodeau-Laufer
Guillaume Alain
J. Yosinski
BDL
127
396
0
05 Jun 2013
1