ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.06292
  4. Cited By
Towards achieving robust universal neural vocoding

Towards achieving robust universal neural vocoding

15 November 2018
Jaime Lorenzo-Trueba
Thomas Drugman
Javier Latorre
Thomas Merritt
Bartosz Putrycz
Roberto Barra-Chicote
Alexis Moinet
Vatsal Aggarwal
    DRL
ArXivPDFHTML

Papers citing "Towards achieving robust universal neural vocoding"

5 / 5 papers shown
Title
Enhancing into the codec: Noise Robust Speech Coding with
  Vector-Quantized Autoencoders
Enhancing into the codec: Noise Robust Speech Coding with Vector-Quantized Autoencoders
Jonah Casebeer
Vinjai Vale
Umut Isik
J. Valin
Ritwik Giri
A. Krishnaswamy
54
18
0
12 Feb 2021
Attention Forcing for Sequence-to-sequence Model Training
Attention Forcing for Sequence-to-sequence Model Training
Qingyun Dou
Yiting Lu
Joshua Efiong
Mark Gales
27
6
0
26 Sep 2019
A Neural Vocoder with Hierarchical Generation of Amplitude and Phase
  Spectra for Statistical Parametric Speech Synthesis
A Neural Vocoder with Hierarchical Generation of Amplitude and Phase Spectra for Statistical Parametric Speech Synthesis
Yang Ai
Zhenhua Ling
21
29
0
23 Jun 2019
Data Efficient Voice Cloning for Neural Singing Synthesis
Data Efficient Voice Cloning for Neural Singing Synthesis
Merlijn Blaauw
J. Bonada
R. Daido
27
33
0
19 Feb 2019
Transfer Learning from Speaker Verification to Multispeaker
  Text-To-Speech Synthesis
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis
Ye Jia
Yu Zhang
Ron J. Weiss
Quan Wang
Jonathan Shen
...
Zhehuai Chen
Patrick Nguyen
Ruoming Pang
Ignacio López Moreno
Yonghui Wu
207
820
0
12 Jun 2018
1