Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.05381
Cited By
Sorting out Lipschitz function approximation
13 November 2018
Cem Anil
James Lucas
Roger C. Grosse
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sorting out Lipschitz function approximation"
50 / 73 papers shown
Title
Approximation theory for 1-Lipschitz ResNets
Davide Murari
Takashi Furuya
Carola-Bibiane Schönlieb
9
0
0
17 May 2025
A Formally Verified Robustness Certifier for Neural Networks (Extended Version)
James Tobler
Hira Taqdees Syeda
Toby Murray
AAML
29
0
0
11 May 2025
Probabilistic Stability Guarantees for Feature Attributions
Helen Jin
Anton Xue
Weiqiu You
Surbhi Goel
Eric Wong
27
0
0
18 Apr 2025
Support is All You Need for Certified VAE Training
Changming Xu
Debangshu Banerjee
Deepak Vasisht
Gagandeep Singh
AAML
44
0
0
16 Apr 2025
On Space Folds of ReLU Neural Networks
Michal Lewandowski
Hamid Eghbalzadeh
Bernhard Heinzl
Raphael Pisoni
Bernhard A.Moser
MLT
87
1
0
17 Feb 2025
HadamRNN: Binary and Sparse Ternary Orthogonal RNNs
Armand Foucault
Franck Mamalet
François Malgouyres
MQ
85
0
0
28 Jan 2025
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Yanshuo Chen
Zhengmian Hu
Wei Chen
Heng Huang
OT
55
2
0
01 Nov 2024
Certified Causal Defense with Generalizable Robustness
Yiran Qiao
Yu Yin
Chen Chen
Jing Ma
AAML
OOD
CML
63
0
0
28 Aug 2024
JacNet: Learning Functions with Structured Jacobians
Jonathan Lorraine
Safwan Hossain
48
6
0
23 Aug 2024
Parseval Convolution Operators and Neural Networks
Michael Unser
Stanislas Ducotterd
25
3
0
19 Aug 2024
Hidden Synergy:
L
1
L_1
L
1
Weight Normalization and 1-Path-Norm Regularization
Aditya Biswas
41
0
0
29 Apr 2024
Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
Zihao Wang
Zhe Wu
25
3
0
15 Jan 2024
How Smooth Is Attention?
Valérie Castin
Pierre Ablin
Gabriel Peyré
AAML
40
9
0
22 Dec 2023
Spatial Bayesian Neural Networks
A. Zammit‐Mangion
Michael D. Kaminski
Ba-Hien Tran
Maurizio Filippone
Noel Cressie
BDL
18
7
0
16 Nov 2023
1-Lipschitz Neural Networks are more expressive with N-Activations
Bernd Prach
Christoph H. Lampert
AAML
FAtt
24
0
0
10 Nov 2023
Fair Wasserstein Coresets
Zikai Xiong
Niccolò Dalmasso
Shubham Sharma
Freddy Lecue
Daniele Magazzeni
Vamsi K. Potluru
T. Balch
Manuela Veloso
34
2
0
09 Nov 2023
Function-Space Optimality of Neural Architectures with Multivariate Nonlinearities
Rahul Parhi
Michael Unser
47
5
0
05 Oct 2023
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
16
11
0
29 Sep 2023
Certified Robust Models with Slack Control and Large Lipschitz Constants
M. Losch
David Stutz
Bernt Schiele
Mario Fritz
14
4
0
12 Sep 2023
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Feiyang Kang
H. Just
Anit Kumar Sahu
R. Jia
61
10
0
05 Jul 2023
Finding Counterfactually Optimal Action Sequences in Continuous State Spaces
Stratis Tsirtsis
Manuel Gomez Rodriguez
CML
OffRL
30
9
0
06 Jun 2023
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
26
9
0
02 Jun 2023
PDE+: Enhancing Generalization via PDE with Adaptive Distributional Diffusion
Yige Yuan
Bingbing Xu
Bo Lin
Liang Hou
Fei Sun
Huawei Shen
Xueqi Cheng
DiffM
26
4
0
25 May 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
94
32
0
29 Apr 2023
Lipschitz-bounded 1D convolutional neural networks using the Cayley transform and the controllability Gramian
Patricia Pauli
Ruigang Wang
I. Manchester
Frank Allgöwer
32
8
0
20 Mar 2023
A Unified Algebraic Perspective on Lipschitz Neural Networks
Alexandre Araujo
Aaron J. Havens
Blaise Delattre
A. Allauzen
Bin Hu
AAML
36
52
0
06 Mar 2023
Convolutional Neural Networks as 2-D systems
Dennis Gramlich
Patricia Pauli
C. Scherer
Frank Allgöwer
C. Ebenbauer
3DV
36
8
0
06 Mar 2023
CQnet: convex-geometric interpretation and constraining neural-network trajectories
Bas Peters
35
0
0
09 Feb 2023
A Neural-Network-Based Convex Regularizer for Inverse Problems
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
19
26
0
22 Nov 2022
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
23
9
0
15 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
Certified Training: Small Boxes are All You Need
Mark Niklas Muller
Franziska Eckert
Marc Fischer
Martin Vechev
AAML
39
45
0
10 Oct 2022
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
46
12
0
05 Oct 2022
Finding NEEMo: Geometric Fitting using Neural Estimation of the Energy Mover's Distance
O. Kitouni
Niklas Nolte
Mike Williams
26
8
0
30 Sep 2022
Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks
Bernd Prach
Christoph H. Lampert
32
35
0
05 Aug 2022
On the Number of Regions of Piecewise Linear Neural Networks
Alexis Goujon
Arian Etemadi
M. Unser
44
13
0
17 Jun 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
26
48
0
01 May 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
37
16
0
13 Apr 2022
Input Convex Gradient Networks
Jack Richter-Powell
Jonathan Lorraine
Brandon Amos
14
15
0
23 Nov 2021
GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial Networks
Vineeth S. Bhaskara
Tristan Aumentado-Armstrong
Allan D. Jepson
Alex Levinshtein
GAN
43
5
0
04 Nov 2021
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds
Yujia Huang
Huan Zhang
Yuanyuan Shi
J Zico Kolter
Anima Anandkumar
38
76
0
02 Nov 2021
Logical Activation Functions: Logit-space equivalents of Probabilistic Boolean Operators
S. Lowe
Robert C. Earle
Jason dÉon
Thomas Trappenberg
Sageev Oore
23
1
0
22 Oct 2021
Generative Modeling with Optimal Transport Maps
Litu Rout
Alexander Korotin
Evgeny Burnaev
OT
DiffM
122
65
0
06 Oct 2021
CC-Cert: A Probabilistic Approach to Certify General Robustness of Neural Networks
Mikhail Aleksandrovich Pautov
Nurislam Tursynbek
Marina Munkhoeva
Nikita Muravev
Aleksandr Petiushko
Ivan Oseledets
AAML
52
16
0
22 Sep 2021
An automatic differentiation system for the age of differential privacy
Dmitrii Usynin
Alexander Ziller
Moritz Knolle
Andrew Trask
Kritika Prakash
Daniel Rueckert
Georgios Kaissis
30
3
0
22 Sep 2021
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
38
28
0
30 Aug 2021
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
E. M. Achour
Franccois Malgouyres
Franck Mamalet
16
20
0
12 Aug 2021
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective
Florin Gogianu
Tudor Berariu
Mihaela Rosca
Claudia Clopath
L. Buşoniu
Razvan Pascanu
24
52
0
11 May 2021
Neural Network Robustness as a Verification Property: A Principled Case Study
Marco Casadio
Ekaterina Komendantskaya
M. Daggitt
Wen Kokke
Guy Katz
Guy Amir
Idan Refaeli
OOD
AAML
16
39
0
03 Apr 2021
1
2
Next