ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04451
  4. Cited By
Multi-Source Neural Variational Inference
v1v2 (latest)

Multi-Source Neural Variational Inference

11 November 2018
Richard Kurle
Stephan Günnemann
Patrick van der Smagt
    BDLSSLDRL
ArXiv (abs)PDFHTML

Papers citing "Multi-Source Neural Variational Inference"

11 / 11 papers shown
Title
Multimodal Deep Learning
Multimodal Deep Learning
Cem Akkus
Jiquan Ngiam
Vladana Djakovic
Steffen Jauch-Walser
A. Khosla
...
Jann Goschenhofer
Honglak Lee
A. Ng
Daniel Schalk
Matthias Aßenmacher
120
3,176
0
12 Jan 2023
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
510
10,591
0
17 Feb 2020
Multimodal Generative Models for Scalable Weakly-Supervised Learning
Multimodal Generative Models for Scalable Weakly-Supervised Learning
Mike Wu
Noah D. Goodman
DRL
79
380
0
14 Feb 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
David Duvenaud
DRLBDL
135
283
0
10 Jan 2018
Generative Models of Visually Grounded Imagination
Generative Models of Visually Grounded Imagination
Ramakrishna Vedantam
Ian S. Fischer
Jonathan Huang
Kevin Patrick Murphy
48
139
0
30 May 2017
Multimodal Machine Learning: A Survey and Taxonomy
Multimodal Machine Learning: A Survey and Taxonomy
T. Baltrušaitis
Chaitanya Ahuja
Louis-Philippe Morency
114
2,937
0
26 May 2017
Joint Multimodal Learning with Deep Generative Models
Joint Multimodal Learning with Deep Generative Models
Masahiro Suzuki
Kotaro Nakayama
Y. Matsuo
DRLGAN
64
223
0
07 Nov 2016
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
280
1,246
0
01 Sep 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Generalized Evidence Theory
Generalized Evidence Theory
Yong Deng
65
271
0
17 Apr 2014
Neural Variational Inference and Learning in Belief Networks
Neural Variational Inference and Learning in Belief Networks
A. Mnih
Karol Gregor
BDL
198
729
0
31 Jan 2014
1