Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.03804
Cited By
Gradient Descent Finds Global Minima of Deep Neural Networks
9 November 2018
S. Du
J. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient Descent Finds Global Minima of Deep Neural Networks"
50 / 763 papers shown
Title
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
22
124
0
27 May 2019
Temporal-difference learning with nonlinear function approximation: lazy training and mean field regimes
Andrea Agazzi
Jianfeng Lu
11
8
0
27 May 2019
On Learning Over-parameterized Neural Networks: A Functional Approximation Perspective
Lili Su
Pengkun Yang
MLT
21
53
0
26 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
24
183
0
24 May 2019
On the Learning Dynamics of Two-layer Nonlinear Convolutional Neural Networks
Ting Yu
Junzhao Zhang
Zhanxing Zhu
MLT
11
5
0
24 May 2019
How degenerate is the parametrization of neural networks with the ReLU activation function?
Julius Berner
Dennis Elbrächter
Philipp Grohs
ODL
27
28
0
23 May 2019
Exploring Structural Sparsity of Deep Networks via Inverse Scale Spaces
Yanwei Fu
Chen Liu
Donghao Li
Zuyuan Zhong
Xinwei Sun
Jinshan Zeng
Yuan Yao
30
10
0
23 May 2019
Budgeted Training: Rethinking Deep Neural Network Training Under Resource Constraints
Mengtian Li
Ersin Yumer
Deva Ramanan
14
46
0
12 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
17
109
0
09 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
18
241
0
27 Apr 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
42
901
0
26 Apr 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
33
136
0
10 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
32
22
0
10 Apr 2019
A Comparative Analysis of the Optimization and Generalization Property of Two-layer Neural Network and Random Feature Models Under Gradient Descent Dynamics
E. Weinan
Chao Ma
Lei Wu
MLT
16
121
0
08 Apr 2019
Stokes Inversion based on Convolutional Neural Networks
A. Ramos
Institute for Solar Physics
25
45
0
07 Apr 2019
Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning
Kenji Kawaguchi
Jiaoyang Huang
L. Kaelbling
AAML
21
18
0
07 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
19
101
0
02 Apr 2019
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
23
181
0
01 Apr 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
47
351
0
27 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
R. Tibshirani
31
728
0
19 Mar 2019
Stabilize Deep ResNet with A Sharp Scaling Factor
τ
τ
τ
Huishuai Zhang
Da Yu
Mingyang Yi
Wei Chen
Tie-Yan Liu
26
8
0
17 Mar 2019
Theory III: Dynamics and Generalization in Deep Networks
Andrzej Banburski
Q. Liao
Brando Miranda
Lorenzo Rosasco
Fernanda De La Torre
Jack Hidary
T. Poggio
AI4CE
29
3
0
12 Mar 2019
Mean Field Analysis of Deep Neural Networks
Justin A. Sirignano
K. Spiliopoulos
13
82
0
11 Mar 2019
A Priori Estimates of the Population Risk for Residual Networks
E. Weinan
Chao Ma
Qingcan Wang
UQCV
37
61
0
06 Mar 2019
Why Learning of Large-Scale Neural Networks Behaves Like Convex Optimization
Hui Jiang
16
8
0
06 Mar 2019
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods
Maher Nouiehed
Maziar Sanjabi
Tianjian Huang
J. Lee
Meisam Razaviyayn
37
337
0
21 Feb 2019
Global Convergence of Adaptive Gradient Methods for An Over-parameterized Neural Network
Xiaoxia Wu
S. Du
Rachel A. Ward
11
66
0
19 Feb 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
16
1,076
0
18 Feb 2019
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
33
276
0
16 Feb 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
11
283
0
13 Feb 2019
Identity Crisis: Memorization and Generalization under Extreme Overparameterization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Michael C. Mozer
Y. Singer
8
87
0
13 Feb 2019
Towards moderate overparameterization: global convergence guarantees for training shallow neural networks
Samet Oymak
Mahdi Soltanolkotabi
19
318
0
12 Feb 2019
Combining learning rate decay and weight decay with complexity gradient descent - Part I
Pierre Harvey Richemond
Yike Guo
25
4
0
07 Feb 2019
Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks
Phan-Minh Nguyen
AI4CE
24
72
0
07 Feb 2019
Are All Layers Created Equal?
Chiyuan Zhang
Samy Bengio
Y. Singer
20
140
0
06 Feb 2019
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODL
MLT
AI4CE
22
155
0
04 Feb 2019
On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex Learning
Jian Li
Xuanyuan Luo
Mingda Qiao
19
85
0
02 Feb 2019
Depth creates no more spurious local minima
Li Zhang
10
19
0
28 Jan 2019
Stiffness: A New Perspective on Generalization in Neural Networks
Stanislav Fort
Pawel Krzysztof Nowak
Stanislaw Jastrzebski
S. Narayanan
19
94
0
28 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
37
961
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
21
94
0
24 Jan 2019
On Connected Sublevel Sets in Deep Learning
Quynh N. Nguyen
16
102
0
22 Jan 2019
Elimination of All Bad Local Minima in Deep Learning
Kenji Kawaguchi
L. Kaelbling
14
44
0
02 Jan 2019
A Theoretical Analysis of Deep Q-Learning
Jianqing Fan
Zhuoran Yang
Yuchen Xie
Zhaoran Wang
17
595
0
01 Jan 2019
On the Benefit of Width for Neural Networks: Disappearance of Bad Basins
Dawei Li
Tian Ding
Ruoyu Sun
29
37
0
28 Dec 2018
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
Samet Oymak
Mahdi Soltanolkotabi
ODL
6
176
0
25 Dec 2018
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
28
806
0
19 Dec 2018
A Frank-Wolfe Framework for Efficient and Effective Adversarial Attacks
Jinghui Chen
Dongruo Zhou
Jinfeng Yi
Quanquan Gu
AAML
15
67
0
27 Nov 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
30
446
0
21 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
19
1,447
0
09 Nov 2018
Previous
1
2
3
...
14
15
16
Next