ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.00648
  4. Cited By
Prediction Error Meta Classification in Semantic Segmentation: Detection
  via Aggregated Dispersion Measures of Softmax Probabilities

Prediction Error Meta Classification in Semantic Segmentation: Detection via Aggregated Dispersion Measures of Softmax Probabilities

1 November 2018
Matthias Rottmann
Pascal Colling
Thomas-Paul Hack
Robin Shing Moon Chan
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
    UQCV
ArXivPDFHTML

Papers citing "Prediction Error Meta Classification in Semantic Segmentation: Detection via Aggregated Dispersion Measures of Softmax Probabilities"

25 / 25 papers shown
Title
Out-of-Distribution Segmentation in Autonomous Driving: Problems and State of the Art
Out-of-Distribution Segmentation in Autonomous Driving: Problems and State of the Art
Youssef Shoeb
Azarm Nowzad
Hanno Gottschalk
UQCV
90
2
0
04 Mar 2025
Uncertainty and Prediction Quality Estimation for Semantic Segmentation
  via Graph Neural Networks
Uncertainty and Prediction Quality Estimation for Semantic Segmentation via Graph Neural Networks
Edgar Heinert
Stephan Tilgner
Timo Palm
Matthias Rottmann
UQCV
51
0
0
17 Sep 2024
MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
Laura Fieback
Jakob Spiegelberg
Hanno Gottschalk
MLLM
67
5
0
29 May 2024
Uncertainty estimates for semantic segmentation: providing enhanced
  reliability for automated motor claims handling
Uncertainty estimates for semantic segmentation: providing enhanced reliability for automated motor claims handling
Jan Küchler
Daniel Kröll
S. Schoenen
Andreas Witte
UQCV
40
1
0
17 Jan 2024
SQA-SAM: Segmentation Quality Assessment for Medical Images Utilizing
  the Segment Anything Model
SQA-SAM: Segmentation Quality Assessment for Medical Images Utilizing the Segment Anything Model
Yizhe Zhang
Shuo Wang
Tao Zhou
Qingquan Dou
Danny Chen
43
1
0
15 Dec 2023
Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation
Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation
Shyam Nandan Rai
Fabio Cermelli
Barbara Caputo
Carlo Masone
ISeg
ViT
33
5
0
08 Sep 2023
WDiscOOD: Out-of-Distribution Detection via Whitened Linear Discriminant
  Analysis
WDiscOOD: Out-of-Distribution Detection via Whitened Linear Discriminant Analysis
Yiye Chen
Yunzhi Lin
Ruinian Xu
Patricio A. Vela
OODD
37
3
0
14 Mar 2023
Two Video Data Sets for Tracking and Retrieval of Out of Distribution
  Objects
Two Video Data Sets for Tracking and Retrieval of Out of Distribution Objects
Kira Maag
Robin Shing Moon Chan
Svenja Uhlemeyer
K. Kowol
Hanno Gottschalk
47
19
0
05 Oct 2022
GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models
GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models
Chen Liang
Wenguan Wang
Jiaxu Miao
Yi Yang
VLM
46
117
0
05 Oct 2022
Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can
  trust
Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can trust
Benjamin Lambert
Florence Forbes
Senan Doyle
A. Tucholka
M. Dojat
UQCV
MedIm
24
6
0
22 Sep 2022
False Negative Reduction in Semantic Segmentation under Domain Shift
  using Depth Estimation
False Negative Reduction in Semantic Segmentation under Domain Shift using Depth Estimation
Kira Maag
Matthias Rottmann
34
3
0
07 Jul 2022
Uncertainty Quantification and Resource-Demanding Computer Vision
  Applications of Deep Learning
Uncertainty Quantification and Resource-Demanding Computer Vision Applications of Deep Learning
Julian Burghoff
Robin Shing Moon Chan
Hanno Gottschalk
Annika Muetze
Tobias Riedlinger
Matthias Rottmann
Marius Schubert
BDL
34
0
0
30 May 2022
False Positive Detection and Prediction Quality Estimation for LiDAR
  Point Cloud Segmentation
False Positive Detection and Prediction Quality Estimation for LiDAR Point Cloud Segmentation
Pascal Colling
Matthias Rottmann
L. Roese-Koerner
Hanno Gottschalk
3DPC
30
3
0
29 Oct 2021
See Yourself in Others: Attending Multiple Tasks for Own Failure
  Detection
See Yourself in Others: Attending Multiple Tasks for Own Failure Detection
Bo Sun
Jiaxu Xing
Hermann Blum
Roland Siegwart
Cesar Cadena
41
12
0
06 Oct 2021
Post-hoc Models for Performance Estimation of Machine Learning Inference
Post-hoc Models for Performance Estimation of Machine Learning Inference
Xuechen Zhang
Samet Oymak
Jiasi Chen
UQCV
23
4
0
06 Oct 2021
False Negative Reduction in Video Instance Segmentation using
  Uncertainty Estimates
False Negative Reduction in Video Instance Segmentation using Uncertainty Estimates
Kira Maag
UQCV
21
6
0
28 Jun 2021
SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation
SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation
Robin Shing Moon Chan
Krzysztof Lis
Svenja Uhlemeyer
Hermann Blum
S. Honari
Roland Siegwart
Pascal Fua
Mathieu Salzmann
Matthias Rottmann
UQCV
24
136
0
30 Apr 2021
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey
  of Emerging Trends
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey of Emerging Trends
Q. Rahman
Peter Corke
Feras Dayoub
OOD
44
51
0
05 Jan 2021
Improving Video Instance Segmentation by Light-weight Temporal
  Uncertainty Estimates
Improving Video Instance Segmentation by Light-weight Temporal Uncertainty Estimates
Kira Maag
Matthias Rottmann
Serin Varghese
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
UQCV
22
12
0
14 Dec 2020
Entropy Maximization and Meta Classification for Out-Of-Distribution
  Detection in Semantic Segmentation
Entropy Maximization and Meta Classification for Out-Of-Distribution Detection in Semantic Segmentation
Robin Shing Moon Chan
Matthias Rottmann
Hanno Gottschalk
OODD
37
149
0
09 Dec 2020
YOdar: Uncertainty-based Sensor Fusion for Vehicle Detection with Camera
  and Radar Sensors
YOdar: Uncertainty-based Sensor Fusion for Vehicle Detection with Camera and Radar Sensors
K. Kowol
Matthias Rottmann
S. Bracke
Hanno Gottschalk
UQCV
19
37
0
07 Oct 2020
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates
  for Object Detection
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates for Object Detection
Marius Schubert
Karsten Kahl
Matthias Rottmann
UQCV
29
24
0
04 Oct 2020
Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
  Networks
Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation Networks
Kira Maag
Matthias Rottmann
Hanno Gottschalk
29
34
0
12 Nov 2019
Application of Decision Rules for Handling Class Imbalance in Semantic
  Segmentation
Application of Decision Rules for Handling Class Imbalance in Semantic Segmentation
Robin Shing Moon Chan
Matthias Rottmann
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
SSeg
15
40
0
24 Jan 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1