Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.12482
Cited By
v1
v2 (latest)
Using Large Ensembles of Control Variates for Variational Inference
30 October 2018
Tomas Geffner
Justin Domke
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Using Large Ensembles of Control Variates for Variational Inference"
24 / 24 papers shown
Title
Discrete Neural Flow Samplers with Locally Equivariant Transformer
Zijing Ou
Ruixiang Zhang
Yingzhen Li
64
0
0
23 May 2025
Better Estimation of the KL Divergence Between Language Models
Afra Amini
Tim Vieira
Ryan Cotterell
98
0
0
14 Apr 2025
Accelerating Unbiased LLM Evaluation via Synthetic Feedback
Zhaoyi Zhou
Yuda Song
Andrea Zanette
ALM
130
0
0
14 Feb 2025
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Chen Wang
Kaiyi Ji
Junyi Geng
Zhongqiang Ren
Taimeng Fu
...
Yi Du
Qihang Li
Yue Yang
Xiao Lin
Zhipeng Zhao
SSL
149
10
0
28 Jan 2025
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
180
691
0
15 Nov 2017
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
99
300
0
31 Oct 2017
Reducing Reparameterization Gradient Variance
Andrew C. Miller
N. Foti
Alexander DÁmour
Ryan P. Adams
61
84
0
22 May 2017
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference
Geoffrey Roeder
Yuhuai Wu
David Duvenaud
BDL
115
201
0
27 Mar 2017
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
224
282
0
21 Mar 2017
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
342
5,372
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
196
2,533
0
02 Nov 2016
The Generalized Reparameterization Gradient
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
BDL
83
169
0
07 Oct 2016
A scalable end-to-end Gaussian process adapter for irregularly sampled time series classification
Steven Cheng-Xian Li
Benjamin M. Marlin
AI4TS
BDL
52
87
0
14 Jun 2016
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
125
47
0
03 Mar 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
285
4,793
0
04 Jan 2016
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
226
1,514
0
08 Jun 2015
Variational Recurrent Auto-Encoders
Otto Fabius
Joost R. van Amersfoort
GAN
BDL
DRL
89
247
0
20 Dec 2014
Deep Exponential Families
Rajesh Ranganath
Linpeng Tang
Laurent Charlin
David M. Blei
BDL
45
153
0
10 Nov 2014
Neural Variational Inference and Learning in Belief Networks
A. Mnih
Karol Gregor
BDL
182
729
0
31 Jan 2014
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
142
1,167
0
31 Dec 2013
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,929
0
20 Dec 2013
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
259
2,625
0
29 Jun 2012
Variational Bayesian Inference with Stochastic Search
John Paisley
David M. Blei
Michael I. Jordan
BDL
106
499
0
27 Jun 2012
Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization
Alekh Agarwal
Peter L. Bartlett
Pradeep Ravikumar
Martin J. Wainwright
202
251
0
03 Sep 2010
1