ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.12282
  4. Cited By
Assessing Generalization in Deep Reinforcement Learning

Assessing Generalization in Deep Reinforcement Learning

29 October 2018
Charles Packer
Katelyn Gao
Jernej Kos
Philipp Krahenbuhl
V. Koltun
D. Song
    OffRL
ArXivPDFHTML

Papers citing "Assessing Generalization in Deep Reinforcement Learning"

42 / 42 papers shown
Title
Linear Mixture Distributionally Robust Markov Decision Processes
Linear Mixture Distributionally Robust Markov Decision Processes
Zhishuai Liu
Pan Xu
43
0
0
23 May 2025
An Efficient Approach for Cooperative Multi-Agent Learning Problems
An Efficient Approach for Cooperative Multi-Agent Learning Problems
Ángel Aso-Mollar
Eva Onaindia
49
0
0
07 Apr 2025
On Generalization Across Environments In Multi-Objective Reinforcement Learning
Jayden Teoh
Pradeep Varakantham
Peter Vamplew
OffRL
79
1
0
02 Mar 2025
Dual Formulation for Non-Rectangular Lp Robust Markov Decision Processes
Dual Formulation for Non-Rectangular Lp Robust Markov Decision Processes
Navdeep Kumar
Adarsh Gupta
Maxence Mohamed Elfatihi
Giorgia Ramponi
Kfir Y. Levy
Shie Mannor
85
0
0
13 Feb 2025
State Combinatorial Generalization In Decision Making With Conditional Diffusion Models
State Combinatorial Generalization In Decision Making With Conditional Diffusion Models
Xintong Duan
Yutong He
Fahim Tajwar
Wen-Tse Chen
Ruslan Salakhutdinov
Jeff Schneider
OffRL
AI4CE
141
1
0
22 Jan 2025
Disentangling Recognition and Decision Regrets in Image-Based Reinforcement Learning
Disentangling Recognition and Decision Regrets in Image-Based Reinforcement Learning
Alihan Hüyük
A. R. Koblitz
Atefeh Mohajeri
M. Andrews
OffRL
72
0
0
19 Sep 2024
Investigating Generalization Behaviours of Generative Flow Networks
Investigating Generalization Behaviours of Generative Flow Networks
Lazar Atanackovic
Emmanuel Bengio
AI4CE
60
4
0
07 Feb 2024
Neuroevolution of Self-Interpretable Agents
Neuroevolution of Self-Interpretable Agents
Yujin Tang
Duong Nguyen
David R Ha
92
113
0
18 Mar 2020
Quantifying Generalization in Reinforcement Learning
Quantifying Generalization in Reinforcement Learning
K. Cobbe
Oleg Klimov
Christopher Hesse
Taehoon Kim
John Schulman
OffRL
91
670
0
06 Dec 2018
Illuminating Generalization in Deep Reinforcement Learning through
  Procedural Level Generation
Illuminating Generalization in Deep Reinforcement Learning through Procedural Level Generation
Niels Justesen
R. Torrado
Philip Bontrager
Ahmed Khalifa
Julian Togelius
S. Risi
110
184
0
28 Jun 2018
A Dissection of Overfitting and Generalization in Continuous
  Reinforcement Learning
A Dissection of Overfitting and Generalization in Continuous Reinforcement Learning
Amy Zhang
Nicolas Ballas
Joelle Pineau
CLL
OffRL
83
179
0
20 Jun 2018
Gotta Learn Fast: A New Benchmark for Generalization in RL
Gotta Learn Fast: A New Benchmark for Generalization in RL
Alex Nichol
Vicki Pfau
Christopher Hesse
Oleg Klimov
John Schulman
VLM
OffRL
55
177
0
10 Apr 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
Katja Hofmann
M. Deisenroth
BDL
OffRL
AI4CE
74
141
0
20 Mar 2018
An Empirical Evaluation of Generic Convolutional and Recurrent Networks
  for Sequence Modeling
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
Shaojie Bai
J. Zico Kolter
V. Koltun
DRL
86
4,803
0
04 Mar 2018
Deep Learning: A Critical Appraisal
Deep Learning: A Critical Appraisal
G. Marcus
HAI
VLM
119
1,040
0
02 Jan 2018
AI Safety Gridworlds
AI Safety Gridworlds
Jan Leike
Miljan Martic
Victoria Krakovna
Pedro A. Ortega
Tom Everitt
Andrew Lefrancq
Laurent Orseau
Shane Legg
102
253
0
27 Nov 2017
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive
  Environments
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments
Maruan Al-Shedivat
Trapit Bansal
Yuri Burda
Ilya Sutskever
Igor Mordatch
Pieter Abbeel
CLL
66
354
0
10 Oct 2017
Deep Reinforcement Learning that Matters
Deep Reinforcement Learning that Matters
Peter Henderson
Riashat Islam
Philip Bachman
Joelle Pineau
Doina Precup
David Meger
OffRL
116
1,950
0
19 Sep 2017
Revisiting the Arcade Learning Environment: Evaluation Protocols and
  Open Problems for General Agents
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents
Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
J. Veness
Matthew J. Hausknecht
Michael Bowling
71
552
0
18 Sep 2017
A Brief Survey of Deep Reinforcement Learning
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
120
2,809
0
19 Aug 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
468
19,006
0
20 Jul 2017
Learning to Learn: Meta-Critic Networks for Sample Efficient Learning
Learning to Learn: Meta-Critic Networks for Sample Efficient Learning
Flood Sung
Li Zhang
Tao Xiang
Timothy M. Hospedales
Yongxin Yang
OffRL
57
128
0
29 Jun 2017
An Overview of Multi-Task Learning in Deep Neural Networks
An Overview of Multi-Task Learning in Deep Neural Networks
Sebastian Ruder
CVBM
146
2,826
0
15 Jun 2017
Reinforcement Learning under Model Mismatch
Reinforcement Learning under Model Mismatch
Aurko Roy
Huan Xu
Sebastian Pokutta
OOD
48
80
0
15 Jun 2017
Schema Networks: Zero-shot Transfer with a Generative Causal Model of
  Intuitive Physics
Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics
Ken Kansky
Tom Silver
David A. Mély
Mohamed Eldawy
Miguel Lazaro-Gredilla
Xinghua Lou
N. Dorfman
Szymon Sidor
Scott Phoenix
Dileep George
AI4CE
72
234
0
14 Jun 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
813
11,894
0
09 Mar 2017
Robust Adversarial Reinforcement Learning
Robust Adversarial Reinforcement Learning
Lerrel Pinto
James Davidson
Rahul Sukthankar
Abhinav Gupta
OOD
93
854
0
08 Mar 2017
Towards Generalization and Simplicity in Continuous Control
Towards Generalization and Simplicity in Continuous Control
Aravind Rajeswaran
Kendall Lowrey
E. Todorov
Sham Kakade
OffRL
86
276
0
08 Mar 2017
Preparing for the Unknown: Learning a Universal Policy with Online
  System Identification
Preparing for the Unknown: Learning a Universal Policy with Online System Identification
Wenhao Yu
Jie Tan
Chenxi Liu
Greg Turk
OffRL
73
307
0
08 Feb 2017
DeepMind Lab
DeepMind Lab
Charlie Beattie
Joel Z Leibo
Denis Teplyashin
Tom Ward
Marcus Wainwright
...
Stephen Gaffney
Helen King
Demis Hassabis
Shane Legg
Stig Petersen
50
241
0
12 Dec 2016
Learning to reinforcement learn
Learning to reinforcement learn
Jane X. Wang
Z. Kurth-Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z Leibo
Rémi Munos
Charles Blundell
D. Kumaran
M. Botvinick
OffRL
97
978
0
17 Nov 2016
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
81
1,018
0
09 Nov 2016
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles
Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
163
351
0
05 Oct 2016
Progressive Neural Networks
Progressive Neural Networks
Andrei A. Rusu
Neil C. Rabinowitz
Guillaume Desjardins
Hubert Soyer
J. Kirkpatrick
Koray Kavukcuoglu
Razvan Pascanu
R. Hadsell
CLL
AI4CE
77
2,446
0
15 Jun 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
214
5,075
0
05 Jun 2016
ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement
  Learning
ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning
Michal Kempka
Marek Wydmuch
Grzegorz Runc
Jakub Toczek
Wojciech Ja'skowski
60
697
0
06 May 2016
Benchmarking Deep Reinforcement Learning for Continuous Control
Benchmarking Deep Reinforcement Learning for Continuous Control
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
OffRL
79
1,693
0
22 Apr 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
191
8,850
0
04 Feb 2016
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
277
6,764
0
19 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
Optimizing the CVaR via Sampling
Optimizing the CVaR via Sampling
Aviv Tamar
Yonatan Glassner
Shie Mannor
77
186
0
15 Apr 2014
The Arcade Learning Environment: An Evaluation Platform for General
  Agents
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
109
3,004
0
19 Jul 2012
1