Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.12272
Cited By
Adversarial Risk and Robustness: General Definitions and Implications for the Uniform Distribution
29 October 2018
Dimitrios I. Diochnos
Saeed Mahloujifar
Mohammad Mahmoody
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Risk and Robustness: General Definitions and Implications for the Uniform Distribution"
15 / 15 papers shown
Title
Trustworthy Actionable Perturbations
Jesse Friedbaum
Sudarshan Adiga
Ravi Tandon
AAML
38
2
0
18 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
43
1
0
27 Apr 2024
It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness
Peiyu Xiong
Michael W. Tegegn
Jaskeerat Singh Sarin
Shubhraneel Pal
Julia Rubin
SILM
AAML
37
8
0
17 Mar 2023
Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
Jona Klemenc
Holger Trittenbach
AAML
32
1
0
28 Jan 2023
When are Local Queries Useful for Robust Learning?
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
OOD
40
1
0
12 Oct 2022
Sample Complexity Bounds for Robustly Learning Decision Lists against Evasion Attacks
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
AAML
21
5
0
12 May 2022
Deadwooding: Robust Global Pruning for Deep Neural Networks
Sawinder Kaur
Ferdinando Fioretto
Asif Salekin
32
4
0
10 Feb 2022
The Need for Ethical, Responsible, and Trustworthy Artificial Intelligence for Environmental Sciences
A. McGovern
I. Ebert‐Uphoff
D. Gagne
A. Bostrom
26
64
0
15 Dec 2021
Image classifiers can not be made robust to small perturbations
Zheng Dai
David K Gifford
VLM
AAML
36
1
0
07 Dec 2021
On the Existence of the Adversarial Bayes Classifier (Extended Version)
Pranjal Awasthi
Natalie Frank
M. Mohri
31
24
0
03 Dec 2021
Query complexity of adversarial attacks
Grzegorz Gluch
R. Urbanke
AAML
27
5
0
02 Oct 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
38
64
0
11 Feb 2020
A unified view on differential privacy and robustness to adversarial examples
Rafael Pinot
Florian Yger
Cédric Gouy-Pailler
Jamal Atif
AAML
21
17
0
19 Jun 2019
Lower Bounds for Adversarially Robust PAC Learning
Dimitrios I. Diochnos
Saeed Mahloujifar
Mohammad Mahmoody
AAML
27
26
0
13 Jun 2019
Adversarially Robust Learning Could Leverage Computational Hardness
Sanjam Garg
S. Jha
Saeed Mahloujifar
Mohammad Mahmoody
AAML
23
24
0
28 May 2019
1