ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.12263
  4. Cited By
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization
  Bounds

Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds

29 October 2018
David Reeb
Andreas Doerr
S. Gerwinn
Barbara Rakitsch
    GP
ArXivPDFHTML

Papers citing "Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds"

5 / 5 papers shown
Title
Multi-View Majority Vote Learning Algorithms: Direct Minimization of PAC-Bayesian Bounds
Multi-View Majority Vote Learning Algorithms: Direct Minimization of PAC-Bayesian Bounds
Mehdi Hennequin
Abdelkrim Zitouni
K. Benabdeslem
H. Elghazel
Yacine Gaci
50
0
0
09 Nov 2024
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
  Networks with Many More Parameters than Training Data
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
103
812
0
31 Mar 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
304
4,623
0
10 Nov 2016
GPflow: A Gaussian process library using TensorFlow
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
70
664
0
27 Oct 2016
PAC-Bayesian Theory Meets Bayesian Inference
PAC-Bayesian Theory Meets Bayesian Inference
Pascal Germain
Francis R. Bach
Alexandre Lacoste
Simon Lacoste-Julien
65
183
0
27 May 2016
1