Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.09538
Cited By
Pyro: Deep Universal Probabilistic Programming
18 October 2018
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDL
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Pyro: Deep Universal Probabilistic Programming"
50 / 436 papers shown
Title
Efficient Computation Reduction in Bayesian Neural Networks Through Feature Decomposition and Memorization
Xiaotao Jia
Jianlei Yang
Runze Liu
Xueyan Wang
S. Cotofana
Weisheng Zhao
13
26
0
08 May 2020
Orbit: Probabilistic Forecast with Exponential Smoothing
Edwin Ng
Zhishi Wang
Huigang Chen
Steve Yang
Slawek Smyl
AI4TS
8
10
0
18 Apr 2020
Scaling Bayesian inference of mixed multinomial logit models to very large datasets
Filipe Rodrigues
BDL
18
3
0
11 Apr 2020
Capsule Networks -- A Probabilistic Perspective
Lewis Smith
Lisa Schut
Y. Gal
Mark van der Wilk
OCL
11
5
0
07 Apr 2020
Rethinking Parameter Counting in Deep Models: Effective Dimensionality Revisited
Wesley J. Maddox
Gregory W. Benton
A. Wilson
20
61
0
04 Mar 2020
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
11
0
0
02 Mar 2020
MetFlow: A New Efficient Method for Bridging the Gap between Markov Chain Monte Carlo and Variational Inference
Achille Thin
Nikita Kotelevskii
Jean-Stanislas Denain
Léo Grinsztajn
Alain Durmus
Maxim Panov
Eric Moulines
BDL
6
17
0
27 Feb 2020
Lipschitz standardization for multivariate learning
Adrián Javaloy
Isabel Valera
8
0
0
26 Feb 2020
Bayes-TrEx: a Bayesian Sampling Approach to Model Transparency by Example
Serena Booth
Yilun Zhou
Ankit J. Shah
J. Shah
BDL
20
2
0
19 Feb 2020
Gravitational-wave parameter estimation with autoregressive neural network flows
Stephen R. Green
C. Simpson
J. Gair
BDL
83
87
0
18 Feb 2020
The Next Decade in AI: Four Steps Towards Robust Artificial Intelligence
G. Marcus
VLM
32
353
0
14 Feb 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
24
483
0
12 Feb 2020
Black-Box Optimization with Local Generative Surrogates
S. Shirobokov
V. Belavin
Michael Kagan
Andrey Ustyuzhanin
A. G. Baydin
8
3
0
11 Feb 2020
DynamicPPL: Stan-like Speed for Dynamic Probabilistic Models
Mohamed Tarek
Kai Xu
Martin Trapp
Hong Ge
Zoubin Ghahramani
18
7
0
07 Feb 2020
tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern Hardware
Junpeng Lao
Christopher Suter
I. Langmore
C. Chimisov
A. Saxena
Pavel Sountsov
Dave Moore
Rif A. Saurous
Matthew D. Hoffman
Joshua V. Dillon
25
30
0
04 Feb 2020
Torch-Struct: Deep Structured Prediction Library
Alexander M. Rush
21
63
0
03 Feb 2020
Automatic structured variational inference
L. Ambrogioni
Kate Lin
Emily Fertig
Sharad Vikram
Max Hinne
Dave Moore
Marcel van Gerven
BDL
23
29
0
03 Feb 2020
Variational Item Response Theory: Fast, Accurate, and Expressive
Mike Wu
R. Davis
B. Domingue
Chris Piech
Noah D. Goodman
OffRL
36
52
0
01 Feb 2020
Joint Distributions for TensorFlow Probability
Dan Piponi
Dave Moore
Joshua V. Dillon
GP
27
16
0
22 Jan 2020
Newtonian Monte Carlo: single-site MCMC meets second-order gradient methods
Nimar S. Arora
N. Tehrani
K. Shah
Michael Tingley
Y. Li
Narjes Torabi
David Noursi
Sepehr Akhavan Masouleh
Eric Lippert
E. Meijer
BDL
8
3
0
15 Jan 2020
FunMC: A functional API for building Markov Chains
Pavel Sountsov
Alexey Radul
Srinivas Vasudevan
29
1
0
14 Jan 2020
Sampling Prediction-Matching Examples in Neural Networks: A Probabilistic Programming Approach
Serena Booth
Ankit J. Shah
Yilun Zhou
J. Shah
BDL
17
1
0
09 Jan 2020
Probabilistic Reasoning across the Causal Hierarchy
D. Ibeling
Thomas Icard
LRM
AI4CE
14
29
0
09 Jan 2020
Lazy object copy as a platform for population-based probabilistic programming
Lawrence M. Murray
21
5
0
09 Jan 2020
Bayesian task embedding for few-shot Bayesian optimization
Steven Atkinson
Sayan Ghosh
Natarajan Chennimalai-Kumar
Genghis Khan
Liping Wang
BDL
16
1
0
02 Jan 2020
Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro
Du Phan
Neeraj Pradhan
M. Jankowiak
25
349
0
24 Dec 2019
Blang: Bayesian declarative modelling of general data structures and inference via algorithms based on distribution continua
Alexandre Bouchard-Coté
Kevin Chern
Davor Cubranic
Sahand Hosseini
Justin Hume
Matteo Lepur
Zihui Ouyang
G. Sgarbi
16
6
0
22 Dec 2019
srlearn: A Python Library for Gradient-Boosted Statistical Relational Models
Alexander L. Hayes
GP
11
1
0
17 Dec 2019
Probabilistic Software Modeling: A Data-driven Paradigm for Software Analysis
Hannes Thaller
L. Linsbauer
Rudolf Ramler
Alexander Egyed
28
3
0
17 Dec 2019
Integrating Markov processes with structural causal modeling enables counterfactual inference in complex systems
Robert Osazuwa Ness
Kaushal Paneri
O. Vitek
17
7
0
06 Nov 2019
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan-Willem van de Meent
22
7
0
04 Nov 2019
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal Experiments
Adam Foster
M. Jankowiak
M. O'Meara
Yee Whye Teh
Tom Rainforth
BDL
14
58
0
01 Nov 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
29
19
0
29 Oct 2019
Attention for Inference Compilation
William Harvey
Andreas Munk
A. G. Baydin
Alexander Bergholm
Frank Wood
22
9
0
25 Oct 2019
Probabilistic Surrogate Networks for Simulators with Unbounded Randomness
Andreas Munk
Berend Zwartsenberg
Adam Scibior
A. G. Baydin
Andrew Stewart
G. Fernlund
A. Poursartip
Frank Wood
TPM
22
4
0
25 Oct 2019
Functional Tensors for Probabilistic Programming
F. Obermeyer
Eli Bingham
M. Jankowiak
Du Phan
Jonathan P. Chen
19
17
0
23 Oct 2019
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
Yura N. Perov
L. Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Gilligan-Lee
Adam Baker
Saurabh Johri
LRM
20
17
0
17 Oct 2019
Universal Marginaliser for Deep Amortised Inference for Probabilistic Programs
R. Walecki
Kostis Gourgoulias
Adam Baker
Chris Hart
Chris Lucas
Max Zwiessele
A. Buchard
Maria Lomeli
Yura N. Perov
Saurabh Johri
UQCV
16
0
0
16 Oct 2019
Parametric Gaussian Process Regressors
M. Jankowiak
Geoffrey Pleiss
Jacob R. Gardner
UQCV
25
5
0
16 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Intensity-Free Learning of Temporal Point Processes
Oleksandr Shchur
Marin Bilos
Stephan Günnemann
AI4TS
27
167
0
26 Sep 2019
Mixed Hamiltonian Monte Carlo for Mixed Discrete and Continuous Variables
Guangyao Zhou
22
19
0
11 Sep 2019
Static Analysis for Probabilistic Programs
Ryan Bernstein
TPM
21
20
0
10 Sep 2019
Learning Latent Parameters without Human Response Patterns: Item Response Theory with Artificial Crowds
John P. Lalor
Hao Wu
Hong-ye Yu
11
42
0
29 Aug 2019
InferPy: Probabilistic Modeling with Deep Neural Networks Made Easy
Javier Cózar
Rafael Cabañas
Antonio Salmerón
A. Masegosa
BDL
19
3
0
29 Aug 2019
Variationally Inferred Sampling Through a Refined Bound for Probabilistic Programs
Víctor Gallego
D. Insua
BDL
12
1
0
26 Aug 2019
Probabilistic Models with Deep Neural Networks
A. Masegosa
Rafael Cabañas
H. Langseth
Thomas D. Nielsen
Antonio Salmerón
BDL
6
12
0
09 Aug 2019
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
21
23
0
20 Jul 2019
Distributions.jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosystem
Mathieu Besançon
Theodore Papamarkou
D. Anthoff
Alex Arslan
Simon Byrne
Dahua Lin
John Pearson
GP
19
78
0
19 Jul 2019
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
38
142
0
17 Jul 2019
Previous
1
2
3
4
5
6
7
8
9
Next