Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.08810
Cited By
The Frontiers of Fairness in Machine Learning
20 October 2018
Alexandra Chouldechova
Aaron Roth
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Frontiers of Fairness in Machine Learning"
32 / 82 papers shown
Title
Fairness in Streaming Submodular Maximization: Algorithms and Hardness
Marwa El Halabi
Slobodan Mitrović
A. Norouzi-Fard
Jakab Tardos
Jakub Tarnawski
16
47
0
14 Oct 2020
More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence
Tianqing Zhu
Dayong Ye
Wei Wang
Wanlei Zhou
Philip S. Yu
SyDa
38
125
0
05 Aug 2020
An Empirical Characterization of Fair Machine Learning For Clinical Risk Prediction
Stephen R. Pfohl
Agata Foryciarz
N. Shah
FaML
33
108
0
20 Jul 2020
Extending the Machine Learning Abstraction Boundary: A Complex Systems Approach to Incorporate Societal Context
Donald Martin
Vinodkumar Prabhakaran
Jill A. Kuhlberg
A. Smart
William S. Isaac
FaML
14
40
0
17 Jun 2020
A Variational Approach to Privacy and Fairness
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
FaML
DRL
19
25
0
11 Jun 2020
DeepFair: Deep Learning for Improving Fairness in Recommender Systems
Jesús Bobadilla
R. Lara-Cabrera
Ángel González-Prieto
Fernando Ortega
FaML
33
43
0
09 Jun 2020
Statistical Equity: A Fairness Classification Objective
Ninareh Mehrabi
Yuzhong Huang
Fred Morstatter
FaML
20
10
0
14 May 2020
Ensuring Fairness under Prior Probability Shifts
Arpita Biswas
Suvam Mukherjee
OOD
24
33
0
06 May 2020
Multilingual Twitter Corpus and Baselines for Evaluating Demographic Bias in Hate Speech Recognition
Xiaolei Huang
Linzi Xing
Franck Dernoncourt
Michael J. Paul
16
87
0
24 Feb 2020
Learning Certified Individually Fair Representations
Anian Ruoss
Mislav Balunović
Marc Fischer
Martin Vechev
FaML
15
92
0
24 Feb 2020
FR-Train: A Mutual Information-Based Approach to Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
24
78
0
24 Feb 2020
Individual Fairness Revisited: Transferring Techniques from Adversarial Robustness
Samuel Yeom
Matt Fredrikson
AAML
19
26
0
18 Feb 2020
Pipeline Interventions
Eshwar Ram Arunachaleswaran
Sampath Kannan
Aaron Roth
Juba Ziani
22
7
0
16 Feb 2020
A Precise High-Dimensional Asymptotic Theory for Boosting and Minimum-
ℓ
1
\ell_1
ℓ
1
-Norm Interpolated Classifiers
Tengyuan Liang
Pragya Sur
37
68
0
05 Feb 2020
Algorithmic Fairness
Dana Pessach
E. Shmueli
FaML
33
386
0
21 Jan 2020
Keeping Community in the Loop: Understanding Wikipedia Stakeholder Values for Machine Learning-Based Systems
C. E. Smith
Bowen Yu
Anjali Srivastava
Aaron L Halfaker
Loren G. Terveen
Haiyi Zhu
KELM
21
69
0
14 Jan 2020
Measurement and Fairness
Abigail Z. Jacobs
Hanna M. Wallach
14
381
0
11 Dec 2019
Conditional Learning of Fair Representations
Han Zhao
Amanda Coston
T. Adel
Geoffrey J. Gordon
FaML
27
106
0
16 Oct 2019
Perturbation Sensitivity Analysis to Detect Unintended Model Biases
Vinodkumar Prabhakaran
Ben Hutchinson
Margaret Mitchell
22
117
0
09 Oct 2019
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
Dylan Slack
Sorelle A. Friedler
Emile Givental
FaML
32
54
0
24 Aug 2019
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
349
4,237
0
23 Aug 2019
Mitigating Gender Bias in Natural Language Processing: Literature Review
Tony Sun
Andrew Gaut
Shirlyn Tang
Yuxin Huang
Mai Elsherief
Jieyu Zhao
Diba Mirza
E. Belding-Royer
Kai-Wei Chang
William Yang Wang
AI4CE
47
543
0
21 Jun 2019
Disparate Vulnerability to Membership Inference Attacks
B. Kulynych
Mohammad Yaghini
Giovanni Cherubin
Michael Veale
Carmela Troncoso
15
39
0
02 Jun 2019
Fairness and Missing Values
Fernando Martínez-Plumed
Cesar Ferri
David Nieves
José Hernández-Orallo
16
28
0
29 May 2019
Data Cleaning for Accurate, Fair, and Robust Models: A Big Data - AI Integration Approach
Ki Hyun Tae
Yuji Roh
Young H. Oh
Hyunsub Kim
Steven Euijong Whang
19
71
0
22 Apr 2019
Scalable Fair Clustering
A. Backurs
Piotr Indyk
Krzysztof Onak
B. Schieber
A. Vakilian
Tal Wagner
33
197
0
10 Feb 2019
Fair and Unbiased Algorithmic Decision Making: Current State and Future Challenges
Songül Tolan
FaML
24
31
0
15 Jan 2019
Differentially Private Fair Learning
Matthew Jagielski
Michael Kearns
Jieming Mao
Alina Oprea
Aaron Roth
Saeed Sharifi-Malvajerdi
Jonathan R. Ullman
FaML
FedML
30
147
0
06 Dec 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
233
676
0
17 Feb 2018
Matching Code and Law: Achieving Algorithmic Fairness with Optimal Transport
Meike Zehlike
P. Hacker
Emil Wiedemann
21
19
0
21 Dec 2017
Fair Personalization
L. E. Celis
Nisheeth K. Vishnoi
FaML
34
17
0
07 Jul 2017
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
Previous
1
2