ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.08316
  4. Cited By
Heteroskedastic PCA: Algorithm, Optimality, and Applications

Heteroskedastic PCA: Algorithm, Optimality, and Applications

19 October 2018
Anru R. Zhang
T. Tony Cai
Yihong Wu
ArXivPDFHTML

Papers citing "Heteroskedastic PCA: Algorithm, Optimality, and Applications"

21 / 21 papers shown
Title
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
Javier Salazar Cavazos
Jeffrey A. Fessler
Laura Balzano
31
2
0
12 May 2025
Feature Selection for Latent Factor Models
Feature Selection for Latent Factor Models
Rittwika Kansabanik
Adrian Barbu
71
0
0
13 Dec 2024
High-dimensional analysis of ridge regression for non-identically distributed data with a variance profile
High-dimensional analysis of ridge regression for non-identically distributed data with a variance profile
Jérémie Bigot
Issa-Mbenard Dabo
Camille Male
31
4
0
29 Mar 2024
Optimal vintage factor analysis with deflation varimax
Optimal vintage factor analysis with deflation varimax
Xin Bing
Dian Jin
Yuqian Zhang
Yuqian Zhang
19
1
0
16 Oct 2023
Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model
Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model
Runshi Tang
M. Yuan
Anru R. Zhang
43
3
0
02 Jul 2023
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in
  heteroskedastic PCA
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
40
4
0
10 Mar 2023
Treatment Effect Estimation with Unobserved and Heterogeneous
  Confounding Variables
Treatment Effect Estimation with Unobserved and Heterogeneous Confounding Variables
Kevin Jiang
Y. Ning
CML
17
3
0
29 Jul 2022
The Power of Contrast for Feature Learning: A Theoretical Analysis
The Power of Contrast for Feature Learning: A Theoretical Analysis
Wenlong Ji
Zhun Deng
Ryumei Nakada
James Zou
Linjun Zhang
SSL
53
49
0
06 Oct 2021
Causal Discovery in High-Dimensional Point Process Networks with Hidden
  Nodes
Causal Discovery in High-Dimensional Point Process Networks with Hidden Nodes
Xu Wang
Ali Shojaie
CML
3DPC
36
2
0
22 Sep 2021
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
David Hong
Kyle Gilman
Laura Balzano
Jeffrey A. Fessler
40
19
0
10 Jan 2021
Power Iteration for Tensor PCA
Power Iteration for Tensor PCA
Jiaoyang Huang
Daniel Zhengyu Huang
Qing Yang
Guang Cheng
29
18
0
26 Dec 2020
Spectral Methods for Data Science: A Statistical Perspective
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
40
165
0
15 Dec 2020
Selecting the number of components in PCA via random signflips
Selecting the number of components in PCA via random signflips
David Hong
Yueqi Sheng
Yan Sun
11
15
0
05 Dec 2020
On the Non-Asymptotic Concentration of Heteroskedastic Wishart-type
  Matrix
On the Non-Asymptotic Concentration of Heteroskedastic Wishart-type Matrix
T. Tony Cai
Rungang Han
Anru R. Zhang
42
15
0
28 Aug 2020
Learning Entangled Single-Sample Gaussians in the Subset-of-Signals
  Model
Learning Entangled Single-Sample Gaussians in the Subset-of-Signals Model
Yingyu Liang
Hui Yuan
19
5
0
10 Jul 2020
An Optimal Statistical and Computational Framework for Generalized
  Tensor Estimation
An Optimal Statistical and Computational Framework for Generalized Tensor Estimation
Rungang Han
Rebecca Willett
Anru R. Zhang
27
65
0
26 Feb 2020
High-dimensional principal component analysis with heterogeneous
  missingness
High-dimensional principal component analysis with heterogeneous missingness
Ziwei Zhu
Tengyao Wang
R. Samworth
39
47
0
28 Jun 2019
Rapid evaluation of the spectral signal detection threshold and
  Stieltjes transform
Rapid evaluation of the spectral signal detection threshold and Stieltjes transform
W. Leeb
24
7
0
26 Apr 2019
Optimal spectral shrinkage and PCA with heteroscedastic noise
Optimal spectral shrinkage and PCA with heteroscedastic noise
Qiangqiang Wu
Yanjie Liang
22
25
0
06 Nov 2018
Correlated-PCA: Principal Components' Analysis when Data and Noise are
  Correlated
Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated
Namrata Vaswani
Han Guo
25
25
0
15 Aug 2016
Poisson noise reduction with non-local PCA
Poisson noise reduction with non-local PCA
Joseph Salmon
Zachary T. Harmany
Charles-Alban Deledalle
Rebecca Willett
60
313
0
02 Jun 2012
1