ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.04304
  4. Cited By
Multi-Institutional Deep Learning Modeling Without Sharing Patient Data:
  A Feasibility Study on Brain Tumor Segmentation
v1v2 (latest)

Multi-Institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation

10 October 2018
Micah J. Sheller
G. A. Reina
Brandon Edwards
Jason Martin
Spyridon Bakas
    FedML
ArXiv (abs)PDFHTML

Papers citing "Multi-Institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation"

23 / 123 papers shown
Title
Blockchain-based Federated Learning for Device Failure Detection in
  Industrial IoT
Blockchain-based Federated Learning for Device Failure Detection in Industrial IoT
Weishan Zhang
Qinghua Lu
Qiuyu Yu
Zhaotong Li
Yue Liu
Sin Kit Lo
Shiping Chen
Xiwei Xu
Liming Zhu
75
6
0
06 Sep 2020
Precision Health Data: Requirements, Challenges and Existing Techniques
  for Data Security and Privacy
Precision Health Data: Requirements, Challenges and Existing Techniques for Data Security and Privacy
Chandra Thapa
S. Çamtepe
47
213
0
24 Aug 2020
Inverse Distance Aggregation for Federated Learning with Non-IID Data
Inverse Distance Aggregation for Federated Learning with Non-IID Data
Yousef Yeganeh
Azade Farshad
Nassir Navab
Shadi Albarqouni
OOD
70
84
0
17 Aug 2020
A review of deep learning in medical imaging: Imaging traits, technology
  trends, case studies with progress highlights, and future promises
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises
S. Kevin Zhou
H. Greenspan
Christos Davatzikos
James S. Duncan
Bram van Ginneken
A. Madabhushi
Jerry L. Prince
Daniel Rueckert
Ronald M. Summers
220
650
0
02 Aug 2020
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
271
579
0
27 Jul 2020
Privacy-preserving Artificial Intelligence Techniques in Biomedicine
Privacy-preserving Artificial Intelligence Techniques in Biomedicine
Reihaneh Torkzadehmahani
Reza Nasirigerdeh
David B. Blumenthal
T. Kacprowski
M. List
...
Harald H. H. W. Schmidt
A. Schwalber
Christof Tschohl
Andrea Wohner
Jan Baumbach
86
60
0
22 Jul 2020
A Systematic Literature Review on Federated Machine Learning: From A
  Software Engineering Perspective
A Systematic Literature Review on Federated Machine Learning: From A Software Engineering Perspective
Sin Kit Lo
Qinghua Lu
Chen Wang
Hye-Young Paik
Liming Zhu
FedML
161
85
0
22 Jul 2020
MeDaS: An open-source platform as service to help break the walls
  between medicine and informatics
MeDaS: An open-source platform as service to help break the walls between medicine and informatics
Liang Zhang
Johann Li
Ping Li
Xiaoyuan Lu
Peiyi Shen
Guangming Zhu
Syed Afaq Ali Shah
Bennamoun
Kun Qian
Björn W. Schuller
MedIm
67
6
0
12 Jul 2020
Privacy-Preserving Technology to Help Millions of People: Federated
  Prediction Model for Stroke Prevention
Privacy-Preserving Technology to Help Millions of People: Federated Prediction Model for Stroke Prevention
Ce Ju
Ruihui Zhao
Jichao Sun
Xiguang Wei
Bo Zhao
...
Dashan Gao
Ben Tan
Han Yu
Chuning He
Yuan Jin
FedMLOOD
80
34
0
15 Jun 2020
Have you forgotten? A method to assess if machine learning models have
  forgotten data
Have you forgotten? A method to assess if machine learning models have forgotten data
Xiao Liu
Sotirios A. Tsaftaris
FedMLOODMU
61
27
0
21 Apr 2020
An Overview of Federated Deep Learning Privacy Attacks and Defensive
  Strategies
An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies
David Enthoven
Zaid Al-Ars
FedML
93
51
0
01 Apr 2020
Edge Intelligence: Architectures, Challenges, and Applications
Edge Intelligence: Architectures, Challenges, and Applications
Dianlei Xu
Tong Li
Yong Li
Xiang Su
Sasu Tarkoma
Tao Jiang
Jon Crowcroft
Pan Hui
116
29
0
26 Mar 2020
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
284
1,812
0
18 Mar 2020
Federated Extra-Trees with Privacy Preserving
Federated Extra-Trees with Privacy Preserving
Yang Liu
Mingxi Chen
Wenxi Zhang
Junbo Zhang
Yu Zheng
FedML
116
3
0
18 Feb 2020
Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
  Domain Adaptation: ABIDE Results
Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and Domain Adaptation: ABIDE Results
Xiaoxiao Li
Yufeng Gu
Nicha Dvornek
Lawrence H. Staib
P. Ventola
James S. Duncan
FedMLOOD
118
364
0
16 Jan 2020
Abnormal Client Behavior Detection in Federated Learning
Abnormal Client Behavior Detection in Federated Learning
Suyi Li
Yong Cheng
Yang Liu
Wei Wang
Tianjian Chen
AAML
71
135
0
22 Oct 2019
CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer
  Assisted Interventions
CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer Assisted Interventions
Tom Vercauteren
Mathias Unberath
N. Padoy
Nassir Navab
120
112
0
20 Oct 2019
A blockchain-orchestrated Federated Learning architecture for healthcare
  consortia
A blockchain-orchestrated Federated Learning architecture for healthcare consortia
Jonathan Passerat-Palmbach
Tyler Farnan
Robert C Miller
M. Gross
H. Flannery
Bill Gleim
FedML
53
54
0
12 Oct 2019
Privacy-preserving Federated Brain Tumour Segmentation
Privacy-preserving Federated Brain Tumour Segmentation
Wenqi Li
Fausto Milletarì
Daguang Xu
Nicola Rieke
Jonny Hancox
...
Maximilian Baust
Yan Cheng
Sébastien Ourselin
M. Jorge Cardoso
Andrew Feng
FedML
81
484
0
02 Oct 2019
Model-Based and Data-Driven Strategies in Medical Image Computing
Model-Based and Data-Driven Strategies in Medical Image Computing
Daniel Rueckert
Julia A. Schnabel
OODMedImAI4CE
62
50
0
23 Sep 2019
Federated Learning: Challenges, Methods, and Future Directions
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
187
4,584
0
21 Aug 2019
BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated
  Learning
BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated Learning
Abhijit Guha Roy
Shayan Siddiqui
Sebastian Polsterl
Nassir Navab
Christian Wachinger
FedMLOODMedIm
95
309
0
16 May 2019
The Liver Tumor Segmentation Benchmark (LiTS)
The Liver Tumor Segmentation Benchmark (LiTS)
Patrick Bilic
P. Christ
Hongwei Bran Li
Eugene Vorontsov
Avi Ben-Cohen
...
L. Soler
Bram van Ginneken
H. Greenspan
Leo Joskowicz
Bjoern Menze
228
1,037
0
13 Jan 2019
Previous
123