ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.04152
  4. Cited By
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
v1v2 (latest)

Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives

9 October 2018
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
    BDL
ArXiv (abs)PDFHTML

Papers citing "Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives"

29 / 29 papers shown
Title
Scalable Robust Bayesian Co-Clustering with Compositional ELBOs
Scalable Robust Bayesian Co-Clustering with Compositional ELBOs
Ashwin Vinod
Chandrajit Bajaj
BDL
108
0
0
05 Apr 2025
Generative Adversarial Networks for High-Dimensional Item Factor Analysis: A Deep Adversarial Learning Algorithm
Nanyu Luo
Feng Ji
DRL
76
0
0
15 Feb 2025
SoftCVI: Contrastive variational inference with self-generated soft labels
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
206
1
0
22 Jul 2024
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
497
10,591
0
17 Feb 2020
Pathwise Derivatives for Multivariate Distributions
Pathwise Derivatives for Multivariate Distributions
M. Jankowiak
Theofanis Karaletsos
112
11
0
05 Jun 2018
Pathwise Derivatives Beyond the Reparameterization Trick
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
145
113
0
05 Jun 2018
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
T. Le
Adam R. Kosiorek
N. Siddharth
Yee Whye Teh
Frank Wood
BDL
56
23
0
26 May 2018
Implicit Reparameterization Gradients
Implicit Reparameterization Gradients
Michael Figurnov
S. Mohamed
A. Mnih
BDL
105
234
0
22 May 2018
World Models
World Models
David R Ha
Jürgen Schmidhuber
SyDa
146
1,098
0
27 Mar 2018
Stochastic Video Generation with a Learned Prior
Stochastic Video Generation with a Learned Prior
Emily L. Denton
Rob Fergus
VGen
96
526
0
21 Feb 2018
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
172
198
0
13 Feb 2018
Stochastic Variational Video Prediction
Stochastic Variational Video Prediction
Mohammad Babaeizadeh
Chelsea Finn
D. Erhan
R. Campbell
Sergey Levine
DRLVGen
84
543
0
30 Oct 2017
Variational Sequential Monte Carlo
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
263
214
0
31 May 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
238
210
0
25 May 2017
Online Learning Rate Adaptation with Hypergradient Descent
Online Learning Rate Adaptation with Hypergradient Descent
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark Schmidt
Frank Wood
ODL
83
250
0
14 Mar 2017
PixelVAE: A Latent Variable Model for Natural Images
PixelVAE: A Latent Variable Model for Natural Images
Ishaan Gulrajani
Kundan Kumar
Faruk Ahmed
Adrien Ali Taïga
Francesco Visin
David Vazquez
Aaron Courville
DRLSSLBDL
80
340
0
15 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRLSSLGAN
152
676
0
08 Nov 2016
Stochastic Backpropagation through Mixture Density Distributions
Stochastic Backpropagation through Mixture Density Distributions
Alex Graves
BDL
100
44
0
19 Jul 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDLDRL
147
1,825
0
15 Jun 2016
Sequential Neural Models with Stochastic Layers
Sequential Neural Models with Stochastic Layers
Marco Fraccaro
Søren Kaae Sønderby
Ulrich Paquet
Ole Winther
BDL
117
398
0
24 May 2016
Variational inference for Monte Carlo objectives
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRLBDL
161
291
0
22 Feb 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
289
4,807
0
04 Jan 2016
Deep Kalman Filters
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDLAI4TS
73
374
0
16 Nov 2015
Learning Wake-Sleep Recurrent Attention Models
Learning Wake-Sleep Recurrent Attention Models
Jimmy Ba
Roger C. Grosse
Ruslan Salakhutdinov
B. Frey
BDL
90
65
0
22 Sep 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
276
1,246
0
01 Sep 2015
Neural Adaptive Sequential Monte Carlo
Neural Adaptive Sequential Monte Carlo
S. Gu
Zoubin Ghahramani
Richard Turner
BDL
76
147
0
10 Jun 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRLBDL
95
1,262
0
07 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
318
4,196
0
21 May 2015
Reweighted Wake-Sleep
Reweighted Wake-Sleep
J. Bornschein
Yoshua Bengio
BDL
109
183
0
11 Jun 2014
1