ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.03440
  4. Cited By
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear
  Bayesian Filtering: A New Perspective

Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective

8 October 2018
Filip Tronarp
Hans Kersting
Simo Särkkä
Philipp Hennig
ArXivPDFHTML

Papers citing "Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective"

31 / 31 papers shown
Title
Flexible and Efficient Probabilistic PDE Solvers through Gaussian Markov Random Fields
Tim Weiland
Marvin Pfortner
Philipp Hennig
AI4CE
40
0
0
11 Mar 2025
Adaptive Probabilistic ODE Solvers Without Adaptive Memory Requirements
Adaptive Probabilistic ODE Solvers Without Adaptive Memory Requirements
Nicholas Krämer
24
0
0
14 Oct 2024
Physics-Informed Variational State-Space Gaussian Processes
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
31
0
0
20 Sep 2024
Probabilistic Numeric SMC Sampling for Bayesian Nonlinear System
  Identification in Continuous Time
Probabilistic Numeric SMC Sampling for Bayesian Nonlinear System Identification in Continuous Time
Joe D. Longbottom
M.D. Champneys
T. J. Rogers
41
1
0
19 Apr 2024
Diffusion Tempering Improves Parameter Estimation with Probabilistic
  Integrators for Ordinary Differential Equations
Diffusion Tempering Improves Parameter Estimation with Probabilistic Integrators for Ordinary Differential Equations
Jonas Beck
Nathanael Bosch
Michael Deistler
Kyra L. Kadhim
Jakob H. Macke
Philipp Hennig
Philipp Berens
DiffM
41
4
0
19 Feb 2024
Gaussian process learning of nonlinear dynamics
Gaussian process learning of nonlinear dynamics
Dongwei Ye
Mengwu Guo
18
4
0
19 Dec 2023
Modelling pathwise uncertainty of Stochastic Differential Equations
  samplers via Probabilistic Numerics
Modelling pathwise uncertainty of Stochastic Differential Equations samplers via Probabilistic Numerics
Yvann Le Fay
Simo Särkkä
Adrien Corenflos
37
0
0
23 Nov 2023
Parallel-in-Time Probabilistic Numerical ODE Solvers
Parallel-in-Time Probabilistic Numerical ODE Solvers
Nathanael Bosch
Adrien Corenflos
F. Yaghoobi
Filip Tronarp
Philipp Hennig
Simo Särkkä
40
3
0
02 Oct 2023
Data-Adaptive Probabilistic Likelihood Approximation for Ordinary
  Differential Equations
Data-Adaptive Probabilistic Likelihood Approximation for Ordinary Differential Equations
Mohan Wu
Martin Lysy
44
4
0
08 Jun 2023
Modelling the discretization error of initial value problems using the
  Wishart distribution
Modelling the discretization error of initial value problems using the Wishart distribution
Naoki Marumo
Takeru Matsuda
Yuto Miyatake
16
1
0
07 Jun 2023
Probabilistic Exponential Integrators
Probabilistic Exponential Integrators
Nathanael Bosch
Philipp Hennig
Filip Tronarp
30
6
0
24 May 2023
Fenrir: Physics-Enhanced Regression for Initial Value Problems
Fenrir: Physics-Enhanced Regression for Initial Value Problems
Filip Tronarp
Nathanael Bosch
Philipp Hennig
33
13
0
02 Feb 2022
GParareal: A time-parallel ODE solver using Gaussian process emulation
GParareal: A time-parallel ODE solver using Gaussian process emulation
K. Pentland
M. Tamborrino
Timothy John Sullivan
J. Buchanan
Lynton C. Appel
11
8
0
31 Jan 2022
ProbNum: Probabilistic Numerics in Python
ProbNum: Probabilistic Numerics in Python
Jonathan Wenger
Nicholas Kramer
Marvin Pfortner
Jonathan Schmidt
Nathanael Bosch
...
A. Gessner
Toni Karvonen
F. Briol
Maren Mahsereci
Philipp Hennig
49
17
0
03 Dec 2021
Probabilistic Numerical Method of Lines for Time-Dependent Partial
  Differential Equations
Probabilistic Numerical Method of Lines for Time-Dependent Partial Differential Equations
Nicholas Kramer
Jonathan Schmidt
Philipp Hennig
24
18
0
22 Oct 2021
Probabilistic ODE Solutions in Millions of Dimensions
Probabilistic ODE Solutions in Millions of Dimensions
Nicholas Kramer
Nathanael Bosch
Jonathan Schmidt
Philipp Hennig
26
18
0
22 Oct 2021
Pick-and-Mix Information Operators for Probabilistic ODE Solvers
Pick-and-Mix Information Operators for Probabilistic ODE Solvers
Nathanael Bosch
Filip Tronarp
Philipp Hennig
33
10
0
20 Oct 2021
Piecewise monotone estimation in one-parameter exponential family
Piecewise monotone estimation in one-parameter exponential family
Takeru Matsuda
Yuto Miyatake
25
2
0
30 Aug 2021
Black Box Probabilistic Numerics
Black Box Probabilistic Numerics
Onur Teymur
Christopher N. Foley
Philip G. Breen
Toni Karvonen
Chris J. Oates
30
5
0
15 Jun 2021
Linear-Time Probabilistic Solutions of Boundary Value Problems
Linear-Time Probabilistic Solutions of Boundary Value Problems
Nicholas Kramer
Philipp Hennig
6
1
0
14 Jun 2021
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
53
19
0
22 Apr 2021
A Probabilistic State Space Model for Joint Inference from Differential
  Equations and Data
A Probabilistic State Space Model for Joint Inference from Differential Equations and Data
Jonathan Schmidt
Nicholas Kramer
Philipp Hennig
8
23
0
18 Mar 2021
Stable Implementation of Probabilistic ODE Solvers
Stable Implementation of Probabilistic ODE Solvers
Nicholas Kramer
Philipp Hennig
102
20
0
18 Dec 2020
Calibrated Adaptive Probabilistic ODE Solvers
Calibrated Adaptive Probabilistic ODE Solvers
Nathanael Bosch
Philipp Hennig
Filip Tronarp
33
29
0
15 Dec 2020
A Fourier State Space Model for Bayesian ODE Filters
A Fourier State Space Model for Bayesian ODE Filters
Hans Kersting
Maren Mahsereci
6
3
0
17 Jul 2020
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Filip Tronarp
Simo Sarkka
Philipp Hennig
43
42
0
01 Apr 2020
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free'
  Dynamical Systems
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
Hans Kersting
N. Krämer
Martin Schiegg
Christian Daniel
Michael Tiemann
Philipp Hennig
19
21
0
21 Feb 2020
A Role for Symmetry in the Bayesian Solution of Differential Equations
A Role for Symmetry in the Bayesian Solution of Differential Equations
Junyang Wang
Jon Cockayne
Chris J. Oates
11
7
0
24 Jun 2019
A Modern Retrospective on Probabilistic Numerics
A Modern Retrospective on Probabilistic Numerics
Chris J. Oates
T. Sullivan
AI4CE
8
64
0
14 Jan 2019
Convergence Rates of Gaussian ODE Filters
Convergence Rates of Gaussian ODE Filters
Hans Kersting
T. Sullivan
Philipp Hennig
6
39
0
25 Jul 2018
Model-based Kernel Sum Rule: Kernel Bayesian Inference with
  Probabilistic Models
Model-based Kernel Sum Rule: Kernel Bayesian Inference with Probabilistic Models
Yu Nishiyama
Motonobu Kanagawa
A. Gretton
Kenji Fukumizu
25
3
0
18 Sep 2014
1