Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.02501
Cited By
v1
v2
v3 (latest)
High-Dimensional Poisson DAG Model Learning Using
ℓ
1
\ell_1
ℓ
1
-Regularized Regression
5 October 2018
G. Park
Sion Park
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"High-Dimensional Poisson DAG Model Learning Using $\ell_1$-Regularized Regression"
18 / 18 papers shown
Title
On Causal Discovery with Equal Variance Assumption
Wenyu Chen
Mathias Drton
Y Samuel Wang
CML
73
85
0
09 Jul 2018
Learning linear structural equation models in polynomial time and sample complexity
Asish Ghoshal
Jean Honorio
CML
83
84
0
15 Jul 2017
Learning Quadratic Variance Function (QVF) DAG models via OverDispersion Scoring (ODS)
G. Park
Garvesh Raskutti
CML
94
45
0
28 Apr 2017
Sparse Poisson Regression with Penalized Weighted Score Function
Jinzhu Jia
Fang Xie
Lihu Xu
83
16
0
11 Mar 2017
Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity
Asish Ghoshal
Jean Honorio
CML
TPM
75
55
0
03 Mar 2017
A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution
David I. Inouye
Eunho Yang
Genevera I. Allen
Pradeep Ravikumar
65
115
0
31 Aug 2016
Information-theoretic limits of Bayesian network structure learning
Asish Ghoshal
Jean Honorio
130
25
0
27 Jan 2016
High-dimensional learning of linear causal networks via inverse covariance estimation
Po-Ling Loh
Peter Buhlmann
CML
115
189
0
14 Nov 2013
CAM: Causal additive models, high-dimensional order search and penalized regression
Peter Buhlmann
J. Peters
J. Ernest
CML
119
325
0
06 Oct 2013
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
David Heckerman
D. Geiger
D. M. Chickering
TPM
117
3,982
0
27 Feb 2013
Directed Cyclic Graphical Representations of Feedback Models
Peter Spirtes
CML
112
239
0
20 Feb 2013
On Graphical Models via Univariate Exponential Family Distributions
Eunho Yang
Pradeep Ravikumar
Genevera I. Allen
Zhandong Liu
68
173
0
17 Jan 2013
Geometry of the faithfulness assumption in causal inference
Caroline Uhler
Garvesh Raskutti
Peter Buhlmann
B. Yu
114
222
0
02 Jul 2012
Identifiability of Gaussian structural equation models with equal error variances
J. Peters
Peter Buhlmann
CML
175
338
0
11 May 2012
Identifiability of Causal Graphs using Functional Models
J. Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
94
155
0
14 Feb 2012
DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model
Shohei Shimizu
Takanori Inazumi
Yasuhiro Sogawa
Aapo Hyvarinen
Yoshinobu Kawahara
Takashi Washio
P. Hoyer
K. Bollen
CML
102
512
0
13 Jan 2011
High-dimensional covariance estimation by minimizing
ℓ
1
\ell_1
ℓ
1
-penalized log-determinant divergence
Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
247
872
0
21 Nov 2008
High-Dimensional Graphical Model Selection Using
ℓ
1
\ell_1
ℓ
1
-Regularized Logistic Regression
Pradeep Ravikumar
Martin J. Wainwright
John D. Lafferty
305
177
0
26 Apr 2008
1