Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.01212
Cited By
Approximation and sampling of multivariate probability distributions in the tensor train decomposition
2 October 2018
S. Dolgov
K. Anaya-Izquierdo
C. Fox
Robert Scheichl
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Approximation and sampling of multivariate probability distributions in the tensor train decomposition"
30 / 30 papers shown
Title
Explaining Anomalies with Tensor Networks
Hans Hohenfeld
Marius Beuerle
Elie Mounzer
29
0
0
06 May 2025
A friendly introduction to triangular transport
M. Ramgraber
Daniel Sharp
M. Le Provost
Youssef Marzouk
60
0
0
27 Mar 2025
Sampling-Based Constrained Motion Planning with Products of Experts
Amirreza Razmjoo
Teng Xue
Suhan Shetty
Sylvain Calinon
43
1
0
23 Dec 2024
Non-negative Tensor Mixture Learning for Discrete Density Estimation
Kazu Ghalamkari
Jesper L. Hinrich
Morten Mørup
59
1
0
28 May 2024
Sequential transport maps using SoS density estimation and
α
α
α
-divergences
Benjamin Zanger
Tiangang Cui
Martin Schreiber
O. Zahm
33
1
0
27 Feb 2024
Optimal sampling for stochastic and natural gradient descent
Robert Gruhlke
A. Nouy
Philipp Trunschke
22
3
0
05 Feb 2024
Tractable Optimal Experimental Design using Transport Maps
Karina Koval
Roland Herzog
Robert Scheichl
OT
19
9
0
15 Jan 2024
Metropolis-adjusted interacting particle sampling
Bjorn Sprungk
Simon Weissmann
Jakob Zech
21
7
0
21 Dec 2023
TERM Model: Tensor Ring Mixture Model for Density Estimation
Ruituo Wu
Jiani Liu
Ce Zhu
Anh-Huy Phan
Ivan V. Oseledets
Yipeng Liu
26
1
0
13 Dec 2023
Combining Monte Carlo and Tensor-network Methods for Partial Differential Equations via Sketching
Yian Chen
Y. Khoo
13
1
0
29 May 2023
Tensorizing flows: a tool for variational inference
Y. Khoo
M. Lindsey
Renana Keydar
DRL
20
4
0
03 May 2023
Quasi-Monte Carlo methods for mixture distributions and approximated distributions via piecewise linear interpolation
Tiangang Cui
J. Dick
F. Pillichshammer
21
2
0
28 Apr 2023
Generative Modeling via Hierarchical Tensor Sketching
Yifan Peng
Yian Chen
E. Stoudenmire
Y. Khoo
13
13
0
11 Apr 2023
Self-reinforced polynomial approximation methods for concentrated probability densities
Tiangang Cui
S. Dolgov
O. Zahm
19
5
0
05 Mar 2023
High-dimensional density estimation with tensorizing flow
Yinuo Ren
Hongli Zhao
Y. Khoo
Lexing Ying
8
9
0
01 Dec 2022
Deep importance sampling using tensor trains with application to a priori and a posteriori rare event estimation
Tiangang Cui
S. Dolgov
Robert Scheichl
39
3
0
05 Sep 2022
Generative Modeling via Tree Tensor Network States
Xun Tang
Y. Hur
Y. Khoo
Lexing Ying
16
8
0
03 Sep 2022
Tensor Train for Global Optimization Problems in Robotics
Suhan Shetty
Teguh Santoso Lembono
Tobias Löw
Sylvain Calinon
15
11
0
10 Jun 2022
Generative modeling via tensor train sketching
Y. Hur
J. Hoskins
M. Lindsey
E. Stoudenmire
Y. Khoo
14
23
0
23 Feb 2022
Computing f-Divergences and Distances of High-Dimensional Probability Density Functions -- Low-Rank Tensor Approximations
A. Litvinenko
Youssef Marzouk
H. Matthies
M. Scavino
Alessio Spantini
22
4
0
13 Nov 2021
Tensor-Train Density Estimation
Georgii Sergeevich Novikov
Maxim Panov
Ivan V. Oseledets
40
34
0
30 Jul 2021
Sparse approximation of triangular transports. Part II: the infinite dimensional case
Jakob Zech
Youssef Marzouk
15
19
0
28 Jul 2021
Scalable conditional deep inverse Rosenblatt transports using tensor-trains and gradient-based dimension reduction
Tiangang Cui
S. Dolgov
O. Zahm
22
15
0
08 Jun 2021
Solutions of the Multivariate Inverse Frobenius--Perron Problem
C. Fox
L.-J. Hsiao
Jeong-Eun Lee
7
4
0
01 Jun 2021
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
20
33
0
14 Jul 2020
Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format
Paul B. Rohrbach
S. Dolgov
Lars Grasedyck
Robert Scheichl
19
21
0
22 Jan 2020
Learning high-dimensional probability distributions using tree tensor networks
Erwan Grelier
A. Nouy
R. Lebrun
9
11
0
17 Dec 2019
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference
Jakob Kruse
Gianluca Detommaso
Ullrich Kothe
Robert Scheichl
11
45
0
25 May 2019
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
Improved Adaptive Rejection Metropolis Sampling Algorithms
Luca Martino
Jesse Read
D. Luengo
35
85
0
24 May 2012
1