ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01212
  4. Cited By
Approximation and sampling of multivariate probability distributions in
  the tensor train decomposition

Approximation and sampling of multivariate probability distributions in the tensor train decomposition

2 October 2018
S. Dolgov
K. Anaya-Izquierdo
C. Fox
Robert Scheichl
ArXivPDFHTML

Papers citing "Approximation and sampling of multivariate probability distributions in the tensor train decomposition"

30 / 30 papers shown
Title
Explaining Anomalies with Tensor Networks
Explaining Anomalies with Tensor Networks
Hans Hohenfeld
Marius Beuerle
Elie Mounzer
29
0
0
06 May 2025
A friendly introduction to triangular transport
A friendly introduction to triangular transport
M. Ramgraber
Daniel Sharp
M. Le Provost
Youssef Marzouk
60
0
0
27 Mar 2025
Sampling-Based Constrained Motion Planning with Products of Experts
Sampling-Based Constrained Motion Planning with Products of Experts
Amirreza Razmjoo
Teng Xue
Suhan Shetty
Sylvain Calinon
43
1
0
23 Dec 2024
Non-negative Tensor Mixture Learning for Discrete Density Estimation
Non-negative Tensor Mixture Learning for Discrete Density Estimation
Kazu Ghalamkari
Jesper L. Hinrich
Morten Mørup
59
1
0
28 May 2024
Sequential transport maps using SoS density estimation and
  $α$-divergences
Sequential transport maps using SoS density estimation and ααα-divergences
Benjamin Zanger
Tiangang Cui
Martin Schreiber
O. Zahm
33
1
0
27 Feb 2024
Optimal sampling for stochastic and natural gradient descent
Optimal sampling for stochastic and natural gradient descent
Robert Gruhlke
A. Nouy
Philipp Trunschke
22
3
0
05 Feb 2024
Tractable Optimal Experimental Design using Transport Maps
Tractable Optimal Experimental Design using Transport Maps
Karina Koval
Roland Herzog
Robert Scheichl
OT
19
9
0
15 Jan 2024
Metropolis-adjusted interacting particle sampling
Metropolis-adjusted interacting particle sampling
Bjorn Sprungk
Simon Weissmann
Jakob Zech
21
7
0
21 Dec 2023
TERM Model: Tensor Ring Mixture Model for Density Estimation
TERM Model: Tensor Ring Mixture Model for Density Estimation
Ruituo Wu
Jiani Liu
Ce Zhu
Anh-Huy Phan
Ivan V. Oseledets
Yipeng Liu
26
1
0
13 Dec 2023
Combining Monte Carlo and Tensor-network Methods for Partial
  Differential Equations via Sketching
Combining Monte Carlo and Tensor-network Methods for Partial Differential Equations via Sketching
Yian Chen
Y. Khoo
13
1
0
29 May 2023
Tensorizing flows: a tool for variational inference
Tensorizing flows: a tool for variational inference
Y. Khoo
M. Lindsey
Renana Keydar
DRL
20
4
0
03 May 2023
Quasi-Monte Carlo methods for mixture distributions and approximated
  distributions via piecewise linear interpolation
Quasi-Monte Carlo methods for mixture distributions and approximated distributions via piecewise linear interpolation
Tiangang Cui
J. Dick
F. Pillichshammer
21
2
0
28 Apr 2023
Generative Modeling via Hierarchical Tensor Sketching
Generative Modeling via Hierarchical Tensor Sketching
Yifan Peng
Yian Chen
E. Stoudenmire
Y. Khoo
13
13
0
11 Apr 2023
Self-reinforced polynomial approximation methods for concentrated
  probability densities
Self-reinforced polynomial approximation methods for concentrated probability densities
Tiangang Cui
S. Dolgov
O. Zahm
19
5
0
05 Mar 2023
High-dimensional density estimation with tensorizing flow
High-dimensional density estimation with tensorizing flow
Yinuo Ren
Hongli Zhao
Y. Khoo
Lexing Ying
8
9
0
01 Dec 2022
Deep importance sampling using tensor trains with application to a
  priori and a posteriori rare event estimation
Deep importance sampling using tensor trains with application to a priori and a posteriori rare event estimation
Tiangang Cui
S. Dolgov
Robert Scheichl
39
3
0
05 Sep 2022
Generative Modeling via Tree Tensor Network States
Generative Modeling via Tree Tensor Network States
Xun Tang
Y. Hur
Y. Khoo
Lexing Ying
16
8
0
03 Sep 2022
Tensor Train for Global Optimization Problems in Robotics
Tensor Train for Global Optimization Problems in Robotics
Suhan Shetty
Teguh Santoso Lembono
Tobias Löw
Sylvain Calinon
15
11
0
10 Jun 2022
Generative modeling via tensor train sketching
Generative modeling via tensor train sketching
Y. Hur
J. Hoskins
M. Lindsey
E. Stoudenmire
Y. Khoo
14
23
0
23 Feb 2022
Computing f-Divergences and Distances of High-Dimensional Probability
  Density Functions -- Low-Rank Tensor Approximations
Computing f-Divergences and Distances of High-Dimensional Probability Density Functions -- Low-Rank Tensor Approximations
A. Litvinenko
Youssef Marzouk
H. Matthies
M. Scavino
Alessio Spantini
22
4
0
13 Nov 2021
Tensor-Train Density Estimation
Tensor-Train Density Estimation
Georgii Sergeevich Novikov
Maxim Panov
Ivan V. Oseledets
40
34
0
30 Jul 2021
Sparse approximation of triangular transports. Part II: the infinite
  dimensional case
Sparse approximation of triangular transports. Part II: the infinite dimensional case
Jakob Zech
Youssef Marzouk
15
19
0
28 Jul 2021
Scalable conditional deep inverse Rosenblatt transports using
  tensor-trains and gradient-based dimension reduction
Scalable conditional deep inverse Rosenblatt transports using tensor-trains and gradient-based dimension reduction
Tiangang Cui
S. Dolgov
O. Zahm
22
15
0
08 Jun 2021
Solutions of the Multivariate Inverse Frobenius--Perron Problem
Solutions of the Multivariate Inverse Frobenius--Perron Problem
C. Fox
L.-J. Hsiao
Jeong-Eun Lee
7
4
0
01 Jun 2021
Deep composition of tensor-trains using squared inverse Rosenblatt
  transports
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
20
33
0
14 Jul 2020
Rank Bounds for Approximating Gaussian Densities in the Tensor-Train
  Format
Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format
Paul B. Rohrbach
S. Dolgov
Lars Grasedyck
Robert Scheichl
19
21
0
22 Jan 2020
Learning high-dimensional probability distributions using tree tensor
  networks
Learning high-dimensional probability distributions using tree tensor networks
Erwan Grelier
A. Nouy
R. Lebrun
9
11
0
17 Dec 2019
HINT: Hierarchical Invertible Neural Transport for Density Estimation
  and Bayesian Inference
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference
Jakob Kruse
Gianluca Detommaso
Ullrich Kothe
Robert Scheichl
11
45
0
25 May 2019
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
Improved Adaptive Rejection Metropolis Sampling Algorithms
Improved Adaptive Rejection Metropolis Sampling Algorithms
Luca Martino
Jesse Read
D. Luengo
35
85
0
24 May 2012
1