ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.00597
  4. Cited By
Taming VAEs

Taming VAEs

1 October 2018
Danilo Jimenez Rezende
Fabio Viola
    DRLCML
ArXiv (abs)PDFHTML

Papers citing "Taming VAEs"

23 / 73 papers shown
Title
Balancing reconstruction error and Kullback-Leibler divergence in
  Variational Autoencoders
Balancing reconstruction error and Kullback-Leibler divergence in Variational Autoencoders
Andrea Asperti
Matteo Trentin
DRL
95
104
0
18 Feb 2020
Learning Flat Latent Manifolds with VAEs
Learning Flat Latent Manifolds with VAEs
Nutan Chen
Alexej Klushyn
Francesco Ferroni
Justin Bayer
Patrick van der Smagt
DRL
85
42
0
12 Feb 2020
Rate-Regularization and Generalization in VAEs
Rate-Regularization and Generalization in VAEs
Alican Bozkurt
Babak Esmaeili
Jean-Baptiste Tristan
Dana H. Brooks
Jennifer G. Dy
Jan-Willem van de Meent
DRL
92
8
0
11 Nov 2019
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
James Lucas
George Tucker
Roger C. Grosse
Mohammad Norouzi
CoGeDRL
94
180
0
06 Nov 2019
Beta DVBF: Learning State-Space Models for Control from High Dimensional
  Observations
Beta DVBF: Learning State-Space Models for Control from High Dimensional Observations
Neha Das
Maximilian Karl
Philip Becker-Ehmck
Patrick van der Smagt
26
2
0
02 Nov 2019
Equivariant Hamiltonian Flows
Equivariant Hamiltonian Flows
Danilo Jimenez Rezende
S. Racanière
I. Higgins
Peter Toth
93
64
0
30 Sep 2019
Automated curricula through setter-solver interactions
Automated curricula through setter-solver interactions
S. Racanière
Andrew Kyle Lampinen
Adam Santoro
David P. Reichert
Vlad Firoiu
Timothy Lillicrap
83
53
0
27 Sep 2019
GENESIS: Generative Scene Inference and Sampling with Object-Centric
  Latent Representations
GENESIS: Generative Scene Inference and Sampling with Object-Centric Latent Representations
Martin Engelcke
Adam R. Kosiorek
Oiwi Parker Jones
Ingmar Posner
OCL
183
309
0
30 Jul 2019
Perceptual Generative Autoencoders
Perceptual Generative Autoencoders
Zijun Zhang
Ruixiang Zhang
Zongpeng Li
Yoshua Bengio
Liam Paull
DRLGAN
79
28
0
25 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
251
778
0
10 Jun 2019
Effective Use of Variational Embedding Capacity in Expressive End-to-End
  Speech Synthesis
Effective Use of Variational Embedding Capacity in Expressive End-to-End Speech Synthesis
Eric Battenberg
Soroosh Mariooryad
Daisy Stanton
RJ Skerry-Ryan
Matt Shannon
David Kao
Tom Bagby
BDL
107
45
0
08 Jun 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRLBDL
84
14
0
31 May 2019
A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities
A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities
Simon A. A. Kohl
Bernardino Romera-Paredes
Klaus H. Maier-Hein
Danilo Jimenez Rezende
S. M. Ali Eslami
Pushmeet Kohli
Andrew Zisserman
Olaf Ronneberger
BDL
84
88
0
30 May 2019
Where is the Information in a Deep Neural Network?
Where is the Information in a Deep Neural Network?
Alessandro Achille
Giovanni Paolini
Stefano Soatto
101
82
0
29 May 2019
Learning Hierarchical Priors in VAEs
Learning Hierarchical Priors in VAEs
Alexej Klushyn
Nutan Chen
Richard Kurle
Botond Cseke
Patrick van der Smagt
BDLCMLDRL
107
101
0
13 May 2019
Generated Loss and Augmented Training of MNIST VAE
Generated Loss and Augmented Training of MNIST VAE
Jason Chou
DRLGAN
50
5
0
24 Apr 2019
Generated Loss, Augmented Training, and Multiscale VAE
Generated Loss, Augmented Training, and Multiscale VAE
Jason Chou
Gautam Hathi
DRL
51
3
0
23 Apr 2019
Effective Estimation of Deep Generative Language Models
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
92
28
0
17 Apr 2019
Exact Rate-Distortion in Autoencoders via Echo Noise
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans
Daniel Moyer
Aram Galstyan
Greg Ver Steeg
59
17
0
15 Apr 2019
From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
DRL
104
272
0
29 Mar 2019
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
BDLDRL
112
215
0
06 Feb 2019
Preventing Posterior Collapse with delta-VAEs
Preventing Posterior Collapse with delta-VAEs
Ali Razavi
Aaron van den Oord
Ben Poole
Oriol Vinyals
DRL
100
171
0
10 Jan 2019
Improving Generalization for Abstract Reasoning Tasks Using Disentangled
  Feature Representations
Improving Generalization for Abstract Reasoning Tasks Using Disentangled Feature Representations
Xander Steenbrugge
Sam Leroux
Tim Verbelen
Bart Dhoedt
OODDRL
78
68
0
12 Nov 2018
Previous
12