ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.11142
  4. Cited By
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial
  VAE

EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE

28 September 2018
Chao Ma
Sebastian Tschiatschek
Konstantina Palla
José Miguel Hernández-Lobato
Sebastian Nowozin
Cheng Zhang
ArXivPDFHTML

Papers citing "EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE"

27 / 27 papers shown
Title
Shared Stochastic Gaussian Process Latent Variable Models: A Multi-modal Generative Model for Quasar Spectra
Shared Stochastic Gaussian Process Latent Variable Models: A Multi-modal Generative Model for Quasar Spectra
Vidhi Lalchand
Anna-Christina Eilers
71
0
0
27 Feb 2025
Evaluation of Active Feature Acquisition Methods for Time-varying Feature Settings
Evaluation of Active Feature Acquisition Methods for Time-varying Feature Settings
Henrik von Kleist
Alireza Zamanian
I. Shpitser
Narges Ahmidi
OffRL
30
2
0
03 Dec 2023
Fast Classification with Sequential Feature Selection in Test Phase
Fast Classification with Sequential Feature Selection in Test Phase
A. Mirzaei
V. Pourahmadi
H. Sheikhzadeh
Alireza Abdollahpourrostam
6
0
0
25 Jun 2023
Variational Information Pursuit for Interpretable Predictions
Variational Information Pursuit for Interpretable Predictions
Aditya Chattopadhyay
Kwan Ho Ryan Chan
B. Haeffele
D. Geman
René Vidal
DRL
24
11
0
06 Feb 2023
Predictive World Models from Real-World Partial Observations
Predictive World Models from Real-World Partial Observations
Robin Karlsson
Alexander Carballo
Keisuke Fujii
Kento Ohtani
K. Takeda
44
5
0
12 Jan 2023
Dealing with missing data using attention and latent space
  regularization
Dealing with missing data using attention and latent space regularization
J. Penny-Dimri
Christoph Bergmeir
Julian Smith
33
0
0
14 Nov 2022
Active Acquisition for Multimodal Temporal Data: A Challenging
  Decision-Making Task
Active Acquisition for Multimodal Temporal Data: A Challenging Decision-Making Task
Jannik Kossen
Cătălina Cangea
Eszter Vértes
Andrew Jaegle
Viorica Patraucean
Ira Ktena
Nenad Tomašev
Danielle Belgrave
35
8
0
09 Nov 2022
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard Turner
L. Yao
BDL
80
24
0
01 Sep 2022
Model-agnostic out-of-distribution detection using combined statistical
  tests
Model-agnostic out-of-distribution detection using combined statistical tests
Federico Bergamin
Pierre-Alexandre Mattei
Jakob Drachmann Havtorn
Hugo Senetaire
Hugo Schmutz
Lars Maaløe
Søren Hauberg
J. Frellsen
OODD
24
18
0
02 Mar 2022
Missing Data Imputation and Acquisition with Deep Hierarchical Models
  and Hamiltonian Monte Carlo
Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo
I. Peis
Chao Ma
José Miguel Hernández-Lobato
BDL
DRL
16
14
0
09 Feb 2022
Posterior Matching for Arbitrary Conditioning
Posterior Matching for Arbitrary Conditioning
R. Strauss
Junier B. Oliva
CML
BDL
36
6
0
28 Jan 2022
A Probabilistic Hard Attention Model For Sequentially Observed Scenes
A Probabilistic Hard Attention Model For Sequentially Observed Scenes
Samrudhdhi B. Rangrej
James J. Clark
24
12
0
15 Nov 2021
Identifiable Generative Models for Missing Not at Random Data Imputation
Identifiable Generative Models for Missing Not at Random Data Imputation
Chao Ma
Cheng Zhang
36
34
0
27 Oct 2021
Learning Multimodal VAEs through Mutual Supervision
Learning Multimodal VAEs through Mutual Supervision
Thomas Joy
Yuge Shi
Philip Torr
Tom Rainforth
Sebastian M. Schmon
N. Siddharth
SSL
42
20
0
23 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
33
124
0
14 May 2021
Contextual HyperNetworks for Novel Feature Adaptation
Contextual HyperNetworks for Novel Feature Adaptation
A. Lamb
Evgeny S. Saveliev
Yingzhen Li
Sebastian Tschiatschek
Camilla Longden
Simon Woodhead
José Miguel Hernández-Lobato
Richard Turner
Pashmina Cameron
Cheng Zhang
OOD
20
6
0
12 Apr 2021
Results and Insights from Diagnostic Questions: The NeurIPS 2020
  Education Challenge
Results and Insights from Diagnostic Questions: The NeurIPS 2020 Education Challenge
Zichao Wang
A. Lamb
Evgeny S. Saveliev
Pashmina Cameron
Yordan Zaykov
...
Richard G. Baraniuk
Craig Barton
Simon L. Peyton Jones
Simon Woodhead
Cheng Zhang
AI4Ed
29
21
0
08 Apr 2021
Unsupervised Learning of Global Factors in Deep Generative Models
Unsupervised Learning of Global Factors in Deep Generative Models
I. Peis
Pablo Martínez Olmos
Antonio Artés-Rodríguez
BDL
DRL
34
8
0
15 Dec 2020
On the Consistency of a Random Forest Algorithm in the Presence of
  Missing Entries
On the Consistency of a Random Forest Algorithm in the Presence of Missing Entries
Irving Gómez-Méndez
Émilien Joly
22
2
0
10 Nov 2020
Sparse Gaussian Process Variational Autoencoders
Sparse Gaussian Process Variational Autoencoders
Matthew Ashman
Jonathan So
Will Tebbutt
Vincent Fortuin
Michael Pearce
Richard Turner
29
33
0
20 Oct 2020
Instructions and Guide for Diagnostic Questions: The NeurIPS 2020
  Education Challenge
Instructions and Guide for Diagnostic Questions: The NeurIPS 2020 Education Challenge
Zichao Wang
A. Lamb
Evgeny S. Saveliev
Pashmina Cameron
Yordan Zaykov
...
Richard G. Baraniuk
Craig Barton
Simon L. Peyton Jones
Simon Woodhead
Cheng Zhang
AI4Ed
23
76
0
23 Jul 2020
not-MIWAE: Deep Generative Modelling with Missing not at Random Data
not-MIWAE: Deep Generative Modelling with Missing not at Random Data
Niels Bruun Ipsen
Pierre-Alexandre Mattei
J. Frellsen
DRL
14
54
0
23 Jun 2020
Asymmetric Shapley values: incorporating causal knowledge into
  model-agnostic explainability
Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
Christopher Frye
C. Rowat
Ilya Feige
16
180
0
14 Oct 2019
TabNet: Attentive Interpretable Tabular Learning
TabNet: Attentive Interpretable Tabular Learning
Sercan Ö. Arik
Tomas Pfister
LMTD
55
1,289
0
20 Aug 2019
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
27
245
0
09 Jul 2019
Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in
  Intensive Care
Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in Intensive Care
H. Overweg
Anna-Lena Popkes
A. Ercole
Yingzhen Li
José Miguel Hernández-Lobato
Yordan Zaykov
Cheng Zhang
33
24
0
07 May 2019
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
25
45
0
06 Dec 2018
1