ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.10756
  4. Cited By
An Introduction to Probabilistic Programming

An Introduction to Probabilistic Programming

27 September 2018
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
    GP
ArXivPDFHTML

Papers citing "An Introduction to Probabilistic Programming"

28 / 28 papers shown
Title
Scaling Integer Arithmetic in Probabilistic Programs
Scaling Integer Arithmetic in Probabilistic Programs
William X. Cao
Poorva Garg
Ryan Tjoa
Steven Holtzen
T. Millstein
Mathias Niepert
TPM
21
6
0
25 Jul 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
35
0
0
10 Jun 2023
Exact Bayesian Inference on Discrete Models via Probability Generating
  Functions: A Probabilistic Programming Approach
Exact Bayesian Inference on Discrete Models via Probability Generating Functions: A Probabilistic Programming Approach
Fabian Zaiser
A. Murawski
Luke Ong
TPM
17
6
0
26 May 2023
The Compositional Structure of Bayesian Inference
The Compositional Structure of Bayesian Inference
Dylan Braithwaite
Jules Hedges
T. S. C. Smithe
24
7
0
10 May 2023
Scallop: A Language for Neurosymbolic Programming
Scallop: A Language for Neurosymbolic Programming
Ziyang Li
Jiani Huang
Mayur Naik
ReLM
LRM
NAI
24
30
0
10 Apr 2023
Efficient Data Mosaicing with Simulation-based Inference
Efficient Data Mosaicing with Simulation-based Inference
Andrew Gambardella
Youngjun Choi
Doyo Choi
Jinjoon Lee
23
0
0
26 Oct 2022
Graphically Structured Diffusion Models
Graphically Structured Diffusion Models
Christian D. Weilbach
William Harvey
Frank Wood
DiffM
35
7
0
20 Oct 2022
Smoothness Analysis for Probabilistic Programs with Application to
  Optimised Variational Inference
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
Wonyeol Lee
Xavier Rival
Hongseok Yang
21
9
0
22 Aug 2022
Language Model Cascades
Language Model Cascades
David Dohan
Winnie Xu
Aitor Lewkowycz
Jacob Austin
David Bieber
...
Henryk Michalewski
Rif A. Saurous
Jascha Narain Sohl-Dickstein
Kevin Patrick Murphy
Charles Sutton
ReLM
LRM
38
99
0
21 Jul 2022
Guaranteed Bounds for Posterior Inference in Universal Probabilistic
  Programming
Guaranteed Bounds for Posterior Inference in Universal Probabilistic Programming
Raven Beutner
Luke Ong
Fabian Zaiser
24
11
0
06 Apr 2022
On Reinforcement Learning, Effect Handlers, and the State Monad
On Reinforcement Learning, Effect Handlers, and the State Monad
Ugo Dal Lago
Francesco Gavazzo
Alexis Ghyselen
26
1
0
29 Mar 2022
Compartmental Models for COVID-19 and Control via Policy Interventions
Compartmental Models for COVID-19 and Control via Policy Interventions
Swapneel Mehta
Noah Kasmanoff
18
0
0
06 Mar 2022
Elliptical Slice Sampling for Probabilistic Verification of Stochastic
  Systems with Signal Temporal Logic Specifications
Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic Specifications
Guy Scher
Sadra Sadraddini
Russ Tedrake
H. Kress-Gazit
18
6
0
28 Feb 2022
Mixed Nondeterministic-Probabilistic Automata: Blending graphical
  probabilistic models with nondeterminism
Mixed Nondeterministic-Probabilistic Automata: Blending graphical probabilistic models with nondeterminism
A. Benveniste
Jean-Baptiste Raclet
TPM
21
1
0
19 Jan 2022
Detecting and Quantifying Malicious Activity with Simulation-based
  Inference
Detecting and Quantifying Malicious Activity with Simulation-based Inference
Andrew Gambardella
Bogdan State
Naemullah Khan
Leo Tsourides
Philip Torr
A. G. Baydin
25
2
0
06 Oct 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
63
73
0
09 Jul 2021
Modularity in Reinforcement Learning via Algorithmic Independence in
  Credit Assignment
Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment
Michael Chang
Sid Kaushik
Sergey Levine
Thomas L. Griffiths
31
8
0
28 Jun 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
41
66
0
15 Feb 2021
Factor Graph Grammars
Factor Graph Grammars
David Chiang
Darcey Riley
LRM
18
10
0
22 Oct 2020
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
  Programmed Deep Kernels
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels
Alexander Lavin
BDL
MedIm
8
9
0
16 Sep 2020
Incremental Sampling Without Replacement for Sequence Models
Incremental Sampling Without Replacement for Sequence Models
Kensen Shi
David Bieber
Charles Sutton
VLM
SyDa
BDL
16
24
0
21 Feb 2020
Composable Effects for Flexible and Accelerated Probabilistic
  Programming in NumPyro
Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro
Du Phan
Neeraj Pradhan
M. Jankowiak
25
349
0
24 Dec 2019
Bayesian nonparametric estimation in the current status continuous mark
  model
Bayesian nonparametric estimation in the current status continuous mark model
G. Jongbloed
Frank van der Meulen
L. Pang
25
1
0
23 Nov 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic
  Programs with Stochastic Support
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
29
19
0
29 Oct 2019
Distributions.jl: Definition and Modeling of Probability Distributions
  in the JuliaStats Ecosystem
Distributions.jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosystem
Mathieu Besançon
Theodore Papamarkou
D. Anthoff
Alex Arslan
Simon Byrne
Dahua Lin
John Pearson
GP
19
78
0
19 Jul 2019
LF-PPL: A Low-Level First Order Probabilistic Programming Language for
  Non-Differentiable Models
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
Yuanshuo Zhou
Bradley Gram-Hansen
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank Wood
31
24
0
06 Mar 2019
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
I. Seaman
Jan-Willem van de Meent
David Wingate
LRM
19
12
0
04 Dec 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank Wood
26
31
0
20 Jul 2018
1