ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.09087
  4. Cited By
Implicit Maximum Likelihood Estimation

Implicit Maximum Likelihood Estimation

24 September 2018
Ke Li
Jitendra Malik
ArXivPDFHTML

Papers citing "Implicit Maximum Likelihood Estimation"

33 / 33 papers shown
Title
Conditional Distribution Quantization in Machine Learning
Conditional Distribution Quantization in Machine Learning
Blaise Delattre
Sylvain Delattre
Alexandre Verine
Alexandre Allauzen
107
0
0
11 Feb 2025
Balancing Act: Distribution-Guided Debiasing in Diffusion Models
Balancing Act: Distribution-Guided Debiasing in Diffusion Models
Rishubh Parihar
Abhijnya Bhat
Abhipsa Basu
Saswat Mallick
Jogendra Nath Kundu
R. V. Babu
87
18
0
28 Feb 2024
Do GANs actually learn the distribution? An empirical study
Do GANs actually learn the distribution? An empirical study
Sanjeev Arora
Yi Zhang
41
191
0
26 Jun 2017
Dualing GANs
Dualing GANs
Yujia Li
Alex Schwing
Kuan-Chieh Wang
R. Zemel
GAN
47
20
0
19 Jun 2017
The Numerics of GANs
The Numerics of GANs
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GAN
75
456
0
30 May 2017
Non-parametric estimation of Jensen-Shannon Divergence in Generative
  Adversarial Network training
Non-parametric estimation of Jensen-Shannon Divergence in Generative Adversarial Network training
M. Sinn
Ambrish Rawat
GAN
35
21
0
25 May 2017
Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in
  Generative Models
Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models
Aditya Grover
Manik Dhar
Stefano Ermon
GAN
61
24
0
24 May 2017
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
Sanjeev Arora
Rong Ge
Yingyu Liang
Tengyu Ma
Yi Zhang
GAN
54
687
0
02 Mar 2017
Fast k-Nearest Neighbour Search via Prioritized DCI
Fast k-Nearest Neighbour Search via Prioritized DCI
Ke Li
Jitendra Malik
20
34
0
01 Mar 2017
Boundary-Seeking Generative Adversarial Networks
Boundary-Seeking Generative Adversarial Networks
R. Devon Hjelm
Athul Paul Jacob
Tong Che
Adam Trischler
Kyunghyun Cho
Yoshua Bengio
GAN
48
170
0
27 Feb 2017
Towards Principled Methods for Training Generative Adversarial Networks
Towards Principled Methods for Training Generative Adversarial Networks
Martín Arjovsky
M. Nault
GAN
77
2,102
0
17 Jan 2017
On the Quantitative Analysis of Decoder-Based Generative Models
On the Quantitative Analysis of Decoder-Based Generative Models
Yuhuai Wu
Yuri Burda
Ruslan Salakhutdinov
Roger C. Grosse
GAN
73
223
0
14 Nov 2016
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
130
415
0
11 Oct 2016
Energy-based Generative Adversarial Network
Energy-based Generative Adversarial Network
Jiaqi Zhao
Michaël Mathieu
Yann LeCun
GAN
124
1,112
0
11 Sep 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
401
8,999
0
10 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
102
1,648
0
02 Jun 2016
Adversarially Learned Inference
Adversarially Learned Inference
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
GAN
62
1,312
0
02 Jun 2016
Asynchrony begets Momentum, with an Application to Deep Learning
Asynchrony begets Momentum, with an Application to Deep Learning
Jeff Donahue
Philipp Krahenbuhl
Stefan Hadjis
Christopher Ré
85
1,827
0
31 May 2016
Generating Images with Perceptual Similarity Metrics based on Deep
  Networks
Generating Images with Perceptual Similarity Metrics based on Deep Networks
Alexey Dosovitskiy
Thomas Brox
DRL
GAN
81
1,137
0
08 Feb 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
415
2,563
0
25 Jan 2016
Fast k-Nearest Neighbour Search via Dynamic Continuous Indexing
Fast k-Nearest Neighbour Search via Dynamic Continuous Indexing
Ke Li
Jitendra Malik
67
31
0
01 Dec 2015
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
234
13,968
0
19 Nov 2015
How (not) to Train your Generative Model: Scheduled Sampling,
  Likelihood, Adversary?
How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?
Ferenc Huszár
OOD
DiffM
GAN
67
296
0
16 Nov 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
85
1,142
0
05 Nov 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
221
1,240
0
01 Sep 2015
Training generative neural networks via Maximum Mean Discrepancy
  optimization
Training generative neural networks via Maximum Mean Discrepancy optimization
Gintare Karolina Dziugaite
Daniel M. Roy
Zoubin Ghahramani
GAN
82
528
0
14 May 2015
Generative Moment Matching Networks
Generative Moment Matching Networks
Yujia Li
Kevin Swersky
R. Zemel
OOD
GAN
93
844
0
10 Feb 2015
Likelihood-free inference via classification
Likelihood-free inference via classification
Michael U. Gutmann
Ritabrata Dutta
Samuel Kaski
J. Corander
120
63
0
18 Jul 2014
Stochastic Backpropagation and Approximate Inference in Deep Generative
  Models
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
Danilo Jimenez Rezende
S. Mohamed
Daan Wierstra
BDL
63
139
0
16 Jan 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
378
16,962
0
20 Dec 2013
Deep Generative Stochastic Networks Trainable by Backprop
Deep Generative Stochastic Networks Trainable by Backprop
Yoshua Bengio
Eric Thibodeau-Laufer
Guillaume Alain
J. Yosinski
BDL
114
396
0
05 Jun 2013
Better Mixing via Deep Representations
Better Mixing via Deep Representations
Yoshua Bengio
Grégoire Mesnil
Yann N. Dauphin
Salah Rifai
70
339
0
18 Jul 2012
A Kernel Method for the Two-Sample Problem
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
184
2,352
0
15 May 2008
1