ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.06006
  4. Cited By
Evaluating Merging Strategies for Sampling-based Uncertainty Techniques
  in Object Detection

Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection

17 September 2018
Dimity Miller
Feras Dayoub
Michael Milford
Niko Sünderhauf
ArXivPDFHTML

Papers citing "Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection"

22 / 22 papers shown
Title
Interpreting Object-level Foundation Models via Visual Precision Search
Interpreting Object-level Foundation Models via Visual Precision Search
Ruoyu Chen
Siyuan Liang
Jingzhi Li
Shiming Liu
Maosen Li
Zheng Huang
Hua Zhang
Xiaochun Cao
FAtt
82
4
0
25 Nov 2024
Can OOD Object Detectors Learn from Foundation Models?
Can OOD Object Detectors Learn from Foundation Models?
Jiahui Liu
Xin Wen
Shizhen Zhao
Y. Chen
Xiaojuan Qi
OODD
38
2
0
08 Sep 2024
YOLOOC: YOLO-based Open-Class Incremental Object Detection with Novel Class Discovery
Qian Wan
Xiang Xiang
Qinhao Zhou
ObjD
33
0
0
30 Mar 2024
Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active
  Learning
Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning
A. Hekimoglu
Michael Schmidt
Alvaro Marcos-Ramiro
3DPC
21
10
0
17 Jul 2023
Towards Building Self-Aware Object Detectors via Reliable Uncertainty
  Quantification and Calibration
Towards Building Self-Aware Object Detectors via Reliable Uncertainty Quantification and Calibration
Kemal Oksuz
Thomas Joy
P. Dokania
UQCV
17
16
0
03 Jul 2023
Generating Evidential BEV Maps in Continuous Driving Space
Generating Evidential BEV Maps in Continuous Driving Space
Yunshuang Yuan
Hao Cheng
M. Yang
Monika Sester
28
10
0
06 Feb 2023
SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for
  Autonomous Driving
SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for Autonomous Driving
Liang Peng
Boqi Li
Wen-Hui Yu
Kailiang Yang
Wenbo Shao
Hong Wang
AAML
28
24
0
08 Nov 2022
PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in
  Long-tail Traffic Scenarios
PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in Long-tail Traffic Scenarios
Liangzu Peng
Jun Li
Wenbo Shao
Hong Wang
25
9
0
07 Nov 2022
Towards Generalized Few-Shot Open-Set Object Detection
Towards Generalized Few-Shot Open-Set Object Detection
Binyi Su
Hua Zhang
Jingzhi Li
Zhongjun Zhou
43
9
0
28 Oct 2022
Tunable Hybrid Proposal Networks for the Open World
Tunable Hybrid Proposal Networks for the Open World
Matthew J. Inkawhich
Nathan Inkawhich
H. Li
Yiran Chen
19
2
0
23 Aug 2022
UC-OWOD: Unknown-Classified Open World Object Detection
UC-OWOD: Unknown-Classified Open World Object Detection
Zhi-zong Wu
Yue Lu
Xingyu Chen
Zhengxing Wu
Liwen Kang
Junzhi Yu
17
55
0
23 Jul 2022
Rectifying Open-set Object Detection: A Taxonomy, Practical
  Applications, and Proper Evaluation
Rectifying Open-set Object Detection: A Taxonomy, Practical Applications, and Proper Evaluation
Yusuke Hosoya
Masanori Suganuma
Takayuki Okatani
ObjD
22
2
0
20 Jul 2022
Instance-Aware Observer Network for Out-of-Distribution Object
  Segmentation
Instance-Aware Observer Network for Out-of-Distribution Object Segmentation
Victor Besnier
Andrei Bursuc
David Picard
Alexandre Briot
39
1
0
18 Jul 2022
Unknown-Aware Object Detection: Learning What You Don't Know from Videos
  in the Wild
Unknown-Aware Object Detection: Learning What You Don't Know from Videos in the Wild
Xuefeng Du
Xin Eric Wang
Gabriel Gozum
Yixuan Li
OODD
34
90
0
08 Mar 2022
Towards Open World Object Detection
Towards Open World Object Detection
K. J. Joseph
Salman Khan
F. Khan
V. Balasubramanian
ObjD
24
448
0
03 Mar 2021
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey
  of Emerging Trends
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey of Emerging Trends
Q. Rahman
Peter Corke
Feras Dayoub
OOD
27
51
0
05 Jan 2021
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
222
0
20 Nov 2020
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates
  for Object Detection
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates for Object Detection
Marius Schubert
Karsten Kahl
Matthias Rottmann
UQCV
26
24
0
04 Oct 2020
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object
  Detectors
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors
Ali Harakeh
Michael H. W. Smart
Steven L. Waslander
BDL
UQCV
18
115
0
09 Mar 2019
Probabilistic Object Detection: Definition and Evaluation
Probabilistic Object Detection: Definition and Evaluation
David Hall
Feras Dayoub
John Skinner
Haoyang Zhang
Dimity Miller
Peter Corke
G. Carneiro
A. Angelova
Niko Sünderhauf
UQCV
35
111
0
27 Nov 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1