ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.05590
  4. Cited By
Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time
  LiDAR 3D Object Detection

Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection

14 September 2018
Di Feng
Lars Rosenbaum
Fabian Timm
Klaus C. J. Dietmayer
    3DPC
ArXivPDFHTML

Papers citing "Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection"

22 / 22 papers shown
Title
Reviewing 3D Object Detectors in the Context of High-Resolution 3+1D
  Radar
Reviewing 3D Object Detectors in the Context of High-Resolution 3+1D Radar
Patrick Palmer
Martin Krueger
R. Altendorfer
Ganesh Adam
Torsten Bertram
3DPC
34
9
0
10 Aug 2023
Overcoming the Limitations of Localization Uncertainty: Efficient &
  Exact Non-Linear Post-Processing and Calibration
Overcoming the Limitations of Localization Uncertainty: Efficient & Exact Non-Linear Post-Processing and Calibration
Moussa Kassem Sbeyti
Michelle Karg
Christian Wirth
Azarm Nowzad
S. Albayrak
22
3
0
15 Jun 2023
Informative Data Selection with Uncertainty for Multi-modal Object
  Detection
Informative Data Selection with Uncertainty for Multi-modal Object Detection
Jiahui Geng
Zhiwei Li
Zhenhong Zou
Xinchen Gao
Yijin Xiong
Dafeng Jin
Jun Li
Huaping Liu
35
5
0
23 Apr 2023
Generating Evidential BEV Maps in Continuous Driving Space
Generating Evidential BEV Maps in Continuous Driving Space
Yunshuang Yuan
Hao Cheng
M. Yang
Monika Sester
36
10
0
06 Feb 2023
Uncertainty Quantification of Collaborative Detection for Self-Driving
Uncertainty Quantification of Collaborative Detection for Self-Driving
Sanbao Su
Yiming Li
Sihong He
Songyang Han
Chen Feng
Caiwen Ding
Fei Miao
56
54
0
16 Sep 2022
GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty
  Estimation
GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation
Yifan Zhang
Qijian Zhang
Zhiyu Zhu
Junhui Hou
Yixuan Yuan
3DPC
42
52
0
06 Jul 2022
Reducing Overconfidence Predictions for Autonomous Driving Perception
Reducing Overconfidence Predictions for Autonomous Driving Perception
Gledson Melotti
C. Premebida
Jordan J. Bird
Diego Resende Faria
Nuno Gonccalves
16
7
0
16 Feb 2022
Neighborhood Spatial Aggregation MC Dropout for Efficient
  Uncertainty-aware Semantic Segmentation in Point Clouds
Neighborhood Spatial Aggregation MC Dropout for Efficient Uncertainty-aware Semantic Segmentation in Point Clouds
Chao Qi
Jianqin Yin
UQCV
3DPC
BDL
25
2
0
05 Dec 2021
Probabilistic Approach for Road-Users Detection
Probabilistic Approach for Road-Users Detection
Gledson Melotti
Weihao Lu
Pedro Conde
Dezong Zhao
A. Asvadi
Nuno Gonçalves
C. Premebida
27
2
0
02 Dec 2021
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation
  with uncertainty
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty
Giorgio Cantarini
Federico Figari Tomenotti
Nicoletta Noceti
Francesca Odone
3DH
19
12
0
02 Nov 2021
Accurate 3D Object Detection using Energy-Based Models
Accurate 3D Object Detection using Energy-Based Models
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
3DPC
38
10
0
08 Dec 2020
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
224
0
20 Nov 2020
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates
  for Object Detection
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates for Object Detection
Marius Schubert
Karsten Kahl
Matthias Rottmann
UQCV
26
24
0
04 Oct 2020
MLOD: Awareness of Extrinsic Perturbation in Multi-LiDAR 3D Object
  Detection for Autonomous Driving
MLOD: Awareness of Extrinsic Perturbation in Multi-LiDAR 3D Object Detection for Autonomous Driving
Jianhao Jiao
Peng Yun
L. Tai
Ming Liu
3DPC
27
10
0
29 Sep 2020
Towards Better Performance and More Explainable Uncertainty for 3D
  Object Detection of Autonomous Vehicles
Towards Better Performance and More Explainable Uncertainty for 3D Object Detection of Autonomous Vehicles
Hujie Pan
Zining Wang
Wei Zhan
Masayoshi Tomizuka
UQCV
3DPC
28
27
0
22 Jun 2020
Inferring Spatial Uncertainty in Object Detection
Inferring Spatial Uncertainty in Object Detection
Zining Wang
Di Feng
Yiyang Zhou
Lars Rosenbaum
Fabian Timm
Klaus C. J. Dietmayer
Masayoshi Tomizuka
Wei Zhan
21
27
0
07 Mar 2020
Learning an Uncertainty-Aware Object Detector for Autonomous Driving
Learning an Uncertainty-Aware Object Detector for Autonomous Driving
Gregory P. Meyer
Niranjan Thakurdesai
UQCV
25
60
0
24 Oct 2019
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object
  Detectors
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors
Ali Harakeh
Michael H. W. Smart
Steven L. Waslander
BDL
UQCV
26
115
0
09 Mar 2019
Deep Multi-modal Object Detection and Semantic Segmentation for
  Autonomous Driving: Datasets, Methods, and Challenges
Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
Di Feng
Christian Haase-Schuetz
Lars Rosenbaum
Heinz Hertlein
Claudius Gläser
Fabian Duffhauss
W. Wiesbeck
Klaus C. J. Dietmayer
3DPC
41
989
0
21 Feb 2019
Exploring Uncertainty in Conditional Multi-Modal Retrieval Systems
Exploring Uncertainty in Conditional Multi-Modal Retrieval Systems
Ahmed Taha
Yi-Ting Chen
Xitong Yang
Teruhisa Misu
L. Davis
UQCV
28
9
0
23 Jan 2019
BirdNet: a 3D Object Detection Framework from LiDAR information
BirdNet: a 3D Object Detection Framework from LiDAR information
Jorge Beltrán
Carlos Guindel
Francisco Miguel Moreno
Daniel Cruzado
F. García
A. D. L. Escalera
3DPC
145
251
0
03 May 2018
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient
  Convolutional Neural Networks
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks
Martin Engelcke
Dushyant Rao
Dominic Zeng Wang
Chi Hay Tong
Ingmar Posner
3DPC
192
522
0
21 Sep 2016
1