ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.02591
  4. Cited By
Learning Invariances for Policy Generalization

Learning Invariances for Policy Generalization

7 September 2018
Rémi Tachet des Combes
Philip Bachman
H. V. Seijen
ArXivPDFHTML

Papers citing "Learning Invariances for Policy Generalization"

15 / 15 papers shown
Title
The Effectiveness of Data Augmentation in Image Classification using
  Deep Learning
The Effectiveness of Data Augmentation in Image Classification using Deep Learning
Luis Perez
Jason Wang
77
2,786
0
13 Dec 2017
Learning to Generalize: Meta-Learning for Domain Generalization
Learning to Generalize: Meta-Learning for Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
97
1,421
0
10 Oct 2017
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
I. Higgins
Arka Pal
Andrei A. Rusu
Loic Matthey
Christopher P. Burgess
Alexander Pritzel
M. Botvinick
Charles Blundell
Alexander Lerchner
DRL
104
415
0
26 Jul 2017
Zero-Shot Task Generalization with Multi-Task Deep Reinforcement
  Learning
Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning
Junhyuk Oh
Satinder Singh
Honglak Lee
Pushmeet Kohli
OffRL
133
269
0
15 Jun 2017
Hybrid Reward Architecture for Reinforcement Learning
Hybrid Reward Architecture for Reinforcement Learning
H. V. Seijen
Mehdi Fatemi
Joshua Romoff
Romain Laroche
Tavian Barnes
Jeffrey Tsang
36
253
0
13 Jun 2017
Fader Networks: Manipulating Images by Sliding Attributes
Fader Networks: Manipulating Images by Sliding Attributes
Guillaume Lample
Neil Zeghidour
Nicolas Usunier
Antoine Bordes
Ludovic Denoyer
MarcÁurelio Ranzato
DRL
GAN
96
545
0
01 Jun 2017
Controllable Invariance through Adversarial Feature Learning
Controllable Invariance through Adversarial Feature Learning
Qizhe Xie
Zihang Dai
Yulun Du
Eduard H. Hovy
Graham Neubig
OOD
94
292
0
31 May 2017
One-Shot Imitation Learning
One-Shot Imitation Learning
Yan Duan
Marcin Andrychowicz
Bradly C. Stadie
Jonathan Ho
Jonas Schneider
Ilya Sutskever
Pieter Abbeel
Wojciech Zaremba
OffRL
77
686
0
21 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
823
11,899
0
09 Mar 2017
Learning from the memory of Atari 2600
Learning from the memory of Atari 2600
Jakub Sygnowski
Henryk Michalewski
94
12
0
04 May 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
191
8,851
0
04 Feb 2016
Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
161
7,639
0
22 Sep 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
277
6,767
0
19 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Unsupervised Domain Adaptation by Backpropagation
Unsupervised Domain Adaptation by Backpropagation
Yaroslav Ganin
Victor Lempitsky
OOD
233
6,022
0
26 Sep 2014
1