Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.02499
Cited By
MixUp as Locally Linear Out-Of-Manifold Regularization
7 September 2018
Hongyu Guo
Yongyi Mao
Richong Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MixUp as Locally Linear Out-Of-Manifold Regularization"
26 / 76 papers shown
Title
Explainability Guided Multi-Site COVID-19 CT Classification
Ameen Ali
Tal Shaharabany
Lior Wolf
34
4
0
25 Mar 2021
Adversarially Optimized Mixup for Robust Classification
Jason Bunk
Srinjoy Chattopadhyay
B. S. Manjunath
S. Chandrasekaran
AAML
30
8
0
22 Mar 2021
Enhancing Data-Free Adversarial Distillation with Activation Regularization and Virtual Interpolation
Xiaoyang Qu
Jianzong Wang
Jing Xiao
18
14
0
23 Feb 2021
Unbiased Teacher for Semi-Supervised Object Detection
Yen-Cheng Liu
Chih-Yao Ma
Zijian He
Chia-Wen Kuo
Kan Chen
Peizhao Zhang
Bichen Wu
Z. Kira
Peter Vajda
68
475
0
18 Feb 2021
When and How Mixup Improves Calibration
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
James Zou
UQCV
36
67
0
11 Feb 2021
Mixup Without Hesitation
Hao Yu
Huanyu Wang
Jianxin Wu
VLM
33
21
0
12 Jan 2021
PointCutMix: Regularization Strategy for Point Cloud Classification
Jinlai Zhang
Lvjie Chen
Bojun Ouyang
Binbin Liu
Jihong Zhu
Yujing Chen
Yanmei Meng
Danfeng Wu
3DPC
31
110
0
05 Jan 2021
Mixing Consistent Deep Clustering
D. Lutscher
Ali el Hassouni
M. Stol
Mark Hoogendoorn
SSL
19
2
0
03 Nov 2020
Tilting at windmills: Data augmentation for deep pose estimation does not help with occlusions
Rafal Pytel
O. Kayhan
Jan van Gemert
3DPC
29
6
0
20 Oct 2020
Combining Ensembles and Data Augmentation can Harm your Calibration
Yeming Wen
Ghassen Jerfel
Rafael Muller
Michael W. Dusenberry
Jasper Snoek
Balaji Lakshminarayanan
Dustin Tran
UQCV
32
63
0
19 Oct 2020
Regularizing Neural Networks via Adversarial Model Perturbation
Yaowei Zheng
Richong Zhang
Yongyi Mao
AAML
30
95
0
10 Oct 2020
How Does Mixup Help With Robustness and Generalization?
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
Amirata Ghorbani
James Zou
AAML
47
244
0
09 Oct 2020
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup
Jang-Hyun Kim
Wonho Choo
Hyun Oh Song
AAML
30
382
0
15 Sep 2020
PointMixup: Augmentation for Point Clouds
Yunlu Chen
Vincent Tao Hu
E. Gavves
Thomas Mensink
Pascal Mettes
Pengwan Yang
Cees G. M. Snoek
3DPC
32
154
0
14 Aug 2020
Mixup-CAM: Weakly-supervised Semantic Segmentation via Uncertainty Regularization
Yu-Ting Chang
Qiaosong Wang
Wei-Chih Hung
Robinson Piramuthu
Yi-Hsuan Tsai
Ming-Hsuan Yang
UQCV
WSOL
24
34
0
03 Aug 2020
FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
Chia-Wen Kuo
Chih-Yao Ma
Jia-Bin Huang
Z. Kira
39
118
0
16 Jul 2020
PatchUp: A Feature-Space Block-Level Regularization Technique for Convolutional Neural Networks
Mojtaba Faramarzi
Mohammad Amini
Akilesh Badrinaaraayanan
Vikas Verma
A. Chandar
AAML
36
31
0
14 Jun 2020
Neural Networks Are More Productive Teachers Than Human Raters: Active Mixup for Data-Efficient Knowledge Distillation from a Blackbox Model
Dongdong Wang
Yandong Li
Liqiang Wang
Boqing Gong
29
48
0
31 Mar 2020
SuperMix: Supervising the Mixing Data Augmentation
Ali Dabouei
Sobhan Soleymani
Fariborz Taherkhani
Nasser M. Nasrabadi
21
98
0
10 Mar 2020
RoIMix: Proposal-Fusion among Multiple Images for Underwater Object Detection
Weihong Lin
Jia-Xing Zhong
Shan Liu
Thomas H. Li
Ge Li
ObjD
20
111
0
08 Nov 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
28
103
0
25 Sep 2019
MetaMixUp: Learning Adaptive Interpolation Policy of MixUp with Meta-Learning
Zhijun Mai
Guosheng Hu
Dexiong Chen
Fumin Shen
Heng Tao Shen
22
41
0
27 Aug 2019
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
400
4,694
0
13 May 2019
Virtual Mixup Training for Unsupervised Domain Adaptation
Xudong Mao
Yun Ma
Zhenguo Yang
Yangbin Chen
Qing Li
38
52
0
10 May 2019
Data augmentation instead of explicit regularization
Alex Hernández-García
Peter König
32
141
0
11 Jun 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
Previous
1
2