Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.08952
Cited By
Deep Learning of Vortex Induced Vibrations
26 August 2018
M. Raissi
Zhicheng Wang
M. Triantafyllou
George Karniadakis
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning of Vortex Induced Vibrations"
40 / 40 papers shown
Title
Plane-Wave Decomposition and Randomised Training; a Novel Path to Generalised PINNs for SHM
Rory Clements
James Ellis
Geoff Hassall
Simon Horsley
Gavin Tabor
60
0
0
31 Mar 2025
PIMRL: Physics-Informed Multi-Scale Recurrent Learning for Spatiotemporal Prediction
Han Wan
Qi Wang
Hao Sun
Hao Sun
AI4CE
57
1
0
13 Mar 2025
ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning
Nilo Schwencke
Cyril Furtlehner
74
1
0
14 Dec 2024
Regression Trees Know Calculus
Nathan Wycoff
31
0
0
22 May 2024
Learning Specialized Activation Functions for Physics-informed Neural Networks
Honghui Wang
Lu Lu
Shiji Song
Gao Huang
PINN
AI4CE
16
12
0
08 Aug 2023
Efficient Error Certification for Physics-Informed Neural Networks
Francisco Eiras
Adel Bibi
Rudy Bunel
Krishnamurthy Dvijotham
Philip Torr
M. P. Kumar
PINN
26
1
0
17 May 2023
Physics-Informed Deep Learning For Traffic State Estimation: A Survey and the Outlook
Xuan Di
Rongye Shi
Zhaobin Mo
Yongjie Fu
PINN
AI4TS
AI4CE
32
28
0
03 Mar 2023
Simple initialization and parametrization of sinusoidal networks via their kernel bandwidth
Filipe de Avila Belbute-Peres
J. Zico Kolter
19
2
0
26 Nov 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
29
18
0
27 Oct 2022
Investigating and Mitigating Failure Modes in Physics-informed Neural Networks (PINNs)
S. Basir
PINN
AI4CE
31
21
0
20 Sep 2022
How important are activation functions in regression and classification? A survey, performance comparison, and future directions
Ameya Dilip Jagtap
George Karniadakis
AI4CE
37
71
0
06 Sep 2022
A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning Enabling Technologies
Adam Thelen
Xiaoge Zhang
Olga Fink
Yan Lu
Sayan Ghosh
B. Youn
Michael D. Todd
S. Mahadevan
Chao Hu
Zhen Hu
SyDa
AI4CE
27
188
0
26 Aug 2022
Predicting Opinion Dynamics via Sociologically-Informed Neural Networks
Maya Okawa
Tomoharu Iwata
AI4CE
PINN
26
20
0
07 Jul 2022
Physics-informed machine learning for Structural Health Monitoring
E. Cross
S. Gibson
M. R. Jones
D. J. Pitchforth
S. Zhang
T. Rogers
AI4CE
56
35
0
30 Jun 2022
Flow Completion Network: Inferring the Fluid Dynamics from Incomplete Flow Information using Graph Neural Networks
Xiaodong He
Yinan Wang
Juan Li
GNN
25
19
0
10 May 2022
Monte Carlo PINNs: deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations
Ling Guo
Hao Wu
Xiao-Jun Yu
Tao Zhou
PINN
AI4CE
29
58
0
16 Mar 2022
Physics-informed neural networks for inverse problems in supersonic flows
Ameya Dilip Jagtap
Zhiping Mao
Nikolaus Adams
George Karniadakis
PINN
26
201
0
23 Feb 2022
A Review of Physics-based Machine Learning in Civil Engineering
S. Vadyala
S. N. Betgeri
J. Matthews
Elizabeth Matthews
AI4CE
25
152
0
09 Oct 2021
Physics and Equality Constrained Artificial Neural Networks: Application to Forward and Inverse Problems with Multi-fidelity Data Fusion
S. Basir
Inanc Senocak
PINN
AI4CE
34
68
0
30 Sep 2021
Learning in Sinusoidal Spaces with Physics-Informed Neural Networks
Jian Cheng Wong
C. Ooi
Abhishek Gupta
Yew-Soon Ong
AI4CE
PINN
SSL
18
77
0
20 Sep 2021
PCNN: A physics-constrained neural network for multiphase flows
Haoyang Zheng
Ziyang Huang
Guang Lin
PINN
27
8
0
18 Sep 2021
Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks
S. Maddu
D. Sturm
Christian L. Müller
I. Sbalzarini
AI4CE
29
81
0
02 Jul 2021
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
Pu Ren
Chengping Rao
Yang Liu
Jianxun Wang
Hao Sun
DiffM
AI4CE
41
193
0
26 Jun 2021
Deep learning in physics: a study of dielectric quasi-cubic particles in a uniform electric field
Zhe Wang
C. Guet
19
5
0
11 May 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
71
223
0
26 Apr 2021
A Data-Driven Approach to Full-Field Damage and Failure Pattern Prediction in Microstructure-Dependent Composites using Deep Learning
R. Sepasdar
Anuj Karpatne
Maryam Shakiba
AI4CE
29
59
0
09 Apr 2021
Can Transfer Neuroevolution Tractably Solve Your Differential Equations?
Jian Cheng Wong
Abhishek Gupta
Yew-Soon Ong
28
21
0
06 Jan 2021
A Physics-Informed Deep Learning Paradigm for Car-Following Models
Zhaobin Mo
Xuan Di
Rongye Shi
PINN
AI4CE
30
131
0
24 Dec 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
33
880
0
28 Jul 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
17
222
0
10 Jun 2020
Multi-fidelity Generative Deep Learning Turbulent Flows
N. Geneva
N. Zabaras
AI4CE
21
44
0
08 Jun 2020
Deep learning of free boundary and Stefan problems
Sizhuang He
P. Perdikaris
27
80
0
04 Jun 2020
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization
Rishikesh Ranade
C. Hill
Jay Pathak
AI4CE
54
123
0
17 May 2020
Data-driven Flood Emulation: Speeding up Urban Flood Predictions by Deep Convolutional Neural Networks
Zifeng Guo
J. Leitão
N. Simões
V. Moosavi
AI4CE
25
117
0
17 Apr 2020
Physics-informed deep learning for incompressible laminar flows
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
17
223
0
24 Feb 2020
Variational Physics-Informed Neural Networks For Solving Partial Differential Equations
E. Kharazmi
Z. Zhang
George Karniadakis
24
237
0
27 Nov 2019
DPM: A deep learning PDE augmentation method (with application to large-eddy simulation)
Jonathan B Freund
J. MacArt
Justin A. Sirignano
AI4CE
4
132
0
20 Nov 2019
Physics-Informed Echo State Networks for Chaotic Systems Forecasting
N. Doan
W. Polifke
Luca Magri
17
40
0
09 Apr 2019
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
M. A. Nabian
Hadi Meidani
PINN
AI4CE
21
57
0
11 Oct 2018
General solutions for nonlinear differential equations: a rule-based self-learning approach using deep reinforcement learning
Shiyin Wei
Xiaowei Jin
Hui Li
AI4CE
39
39
0
13 May 2018
1