Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.07593
Cited By
Caveats for information bottleneck in deterministic scenarios
23 August 2018
Artemy Kolchinsky
Brendan D. Tracey
S. Kuyk
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Caveats for information bottleneck in deterministic scenarios"
21 / 21 papers shown
Title
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Romain Chor
Milad Sefidgaran
Piotr Krasnowski
226
2
0
21 Feb 2025
An Information Criterion for Controlled Disentanglement of Multimodal Data
Chenyu Wang
Sharut Gupta
Xinyi Zhang
Sana Tonekaboni
Stefanie Jegelka
Tommi Jaakkola
Caroline Uhler
DRL
68
2
0
31 Oct 2024
Estimating Information Flow in Deep Neural Networks
Ziv Goldfeld
E. Berg
Kristjan Greenewald
Igor Melnyk
Nam H. Nguyen
Brian Kingsbury
Yury Polyanskiy
50
32
0
12 Oct 2018
Uncertainty in the Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
49
98
0
02 Jul 2018
Entropy and mutual information in models of deep neural networks
Marylou Gabrié
Andre Manoel
Clément Luneau
Jean Barbier
N. Macris
Florent Krzakala
Lenka Zdeborová
61
180
0
24 May 2018
Compressing Neural Networks using the Variational Information Bottleneck
Bin Dai
Chen Zhu
David Wipf
MLT
49
181
0
28 Feb 2018
Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle
Rana Ali Amjad
Bernhard C. Geiger
62
196
0
27 Feb 2018
The Role of Information Complexity and Randomization in Representation Learning
Matías Vera
Pablo Piantanida
L. Rey Vega
69
14
0
14 Feb 2018
Estimating Mixture Entropy with Pairwise Distances
Artemy Kolchinsky
Brendan D. Tracey
OT
28
130
0
08 Jun 2017
Nonlinear Information Bottleneck
Artemy Kolchinsky
Brendan D. Tracey
David Wolpert
55
156
0
06 May 2017
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
98
1,407
0
02 Mar 2017
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
98
1,714
0
01 Dec 2016
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
328
4,624
0
10 Nov 2016
Information Dropout: Learning Optimal Representations Through Noisy Computation
Alessandro Achille
Stefano Soatto
OOD
DRL
SSL
57
401
0
04 Nov 2016
Relevant sparse codes with variational information bottleneck
M. Chalk
O. Marre
G. Tkačik
93
87
0
24 May 2016
The deterministic information bottleneck
D. Strouse
D. Schwab
37
135
0
01 Apr 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,426
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
838
27,303
0
02 Dec 2015
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
179
1,582
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
422
43,635
0
17 Sep 2014
1