Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.04685
Cited By
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
14 August 2018
G. Wang
G. Giannakis
Jie Chen
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization"
43 / 43 papers shown
Title
Linearization of ReLU Activation Function for Neural Network-Embedded Optimization: Optimal Day-Ahead Energy Scheduling
Cunzhi Zhao
Fan Jiang
Xingpeng Li
99
1
0
03 Oct 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
71
1
0
13 Sep 2023
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
66
182
0
01 Apr 2019
Towards moderate overparameterization: global convergence guarantees for training shallow neural networks
Samet Oymak
Mahdi Soltanolkotabi
48
321
0
12 Feb 2019
On Connected Sublevel Sets in Deep Learning
Quynh N. Nguyen
86
102
0
22 Jan 2019
Fitting ReLUs via SGD and Quantized SGD
Seyed Mohammadreza Mousavi Kalan
Mahdi Soltanolkotabi
A. Avestimehr
47
24
0
19 Jan 2019
Elimination of All Bad Local Minima in Deep Learning
Kenji Kawaguchi
L. Kaelbling
59
44
0
02 Jan 2019
Real-time Power System State Estimation and Forecasting via Deep Neural Networks
Liang Zhang
G. Wang
G. Giannakis
AI4TS
59
185
0
15 Nov 2018
Efficiently testing local optimality and escaping saddles for ReLU networks
Chulhee Yun
S. Sra
Ali Jadbabaie
55
10
0
28 Sep 2018
Stochastic Gradient Descent Learns State Equations with Nonlinear Activations
Samet Oymak
43
43
0
09 Sep 2018
Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data
Yuanzhi Li
Yingyu Liang
MLT
214
653
0
03 Aug 2018
Learning ReLU Networks via Alternating Minimization
Gauri Jagatap
Chinmay Hegde
36
11
0
20 Jun 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
94
134
0
20 Jun 2018
On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond
Xingguo Li
Junwei Lu
Zhaoran Wang
Jarvis Haupt
T. Zhao
52
80
0
13 Jun 2018
When Will Gradient Methods Converge to Max-margin Classifier under ReLU Models?
Tengyu Xu
Yi Zhou
Kaiyi Ji
Yingbin Liang
56
19
0
12 Jun 2018
Stochastic Gradient Descent on Separable Data: Exact Convergence with a Fixed Learning Rate
Mor Shpigel Nacson
Nathan Srebro
Daniel Soudry
FedML
MLT
63
100
0
05 Jun 2018
Adding One Neuron Can Eliminate All Bad Local Minima
Shiyu Liang
Ruoyu Sun
Jason D. Lee
R. Srikant
68
89
0
22 May 2018
On the Sublinear Convergence of Randomly Perturbed Alternating Gradient Descent to Second Order Stationary Solutions
Songtao Lu
Mingyi Hong
Zhengdao Wang
20
4
0
28 Feb 2018
Guaranteed Recovery of One-Hidden-Layer Neural Networks via Cross Entropy
H. Fu
Yuejie Chi
Yingbin Liang
FedML
64
39
0
18 Feb 2018
Small nonlinearities in activation functions create bad local minima in neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
ODL
71
95
0
10 Feb 2018
The Multilinear Structure of ReLU Networks
T. Laurent
J. V. Brecht
55
51
0
29 Dec 2017
Spurious Local Minima are Common in Two-Layer ReLU Neural Networks
Itay Safran
Ohad Shamir
173
263
0
24 Dec 2017
Deep linear neural networks with arbitrary loss: All local minima are global
T. Laurent
J. V. Brecht
ODL
52
136
0
05 Dec 2017
Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima
S. Du
Jason D. Lee
Yuandong Tian
Barnabás Póczós
Aarti Singh
MLT
130
236
0
03 Dec 2017
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
149
916
0
27 Oct 2017
SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data
Alon Brutzkus
Amir Globerson
Eran Malach
Shai Shalev-Shwartz
MLT
151
279
0
27 Oct 2017
Generalization in Deep Learning
Kenji Kawaguchi
L. Kaelbling
Yoshua Bengio
ODL
86
459
0
16 Oct 2017
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
Mahdi Soltanolkotabi
Adel Javanmard
Jason D. Lee
163
419
0
16 Jul 2017
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
141
1,255
0
27 Jun 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
199
1,217
0
26 Jun 2017
Recovery Guarantees for One-hidden-layer Neural Networks
Kai Zhong
Zhao Song
Prateek Jain
Peter L. Bartlett
Inderjit S. Dhillon
MLT
163
336
0
10 Jun 2017
Learning ReLUs via Gradient Descent
Mahdi Soltanolkotabi
MLT
68
181
0
10 May 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
106
812
0
31 Mar 2017
Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs
Alon Brutzkus
Amir Globerson
MLT
163
313
0
26 Feb 2017
Exponential expressivity in deep neural networks through transient chaos
Ben Poole
Subhaneil Lahiri
M. Raghu
Jascha Narain Sohl-Dickstein
Surya Ganguli
88
591
0
16 Jun 2016
On the Expressive Power of Deep Neural Networks
M. Raghu
Ben Poole
Jon M. Kleinberg
Surya Ganguli
Jascha Narain Sohl-Dickstein
61
788
0
16 Jun 2016
Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow
G. Wang
G. Giannakis
Yonina C. Eldar
80
362
0
26 May 2016
Deep Learning without Poor Local Minima
Kenji Kawaguchi
ODL
215
922
0
23 May 2016
Benefits of depth in neural networks
Matus Telgarsky
346
608
0
14 Feb 2016
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
135
1,058
0
06 Mar 2015
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
AI4CE
88
657
0
20 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,330
0
04 Sep 2014
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
374
3,128
0
15 Aug 2013
1