ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.10363
  4. Cited By
Message-passing neural networks for high-throughput polymer screening

Message-passing neural networks for high-throughput polymer screening

26 July 2018
Peter C. St. John
Caleb Phillips
Travis W. Kemper
A. N. Wilson
M. Crowley
M. Nimlos
R. Larsen
    AI4CE
ArXivPDFHTML

Papers citing "Message-passing neural networks for high-throughput polymer screening"

15 / 15 papers shown
Title
Molecular Hypergraph Neural Networks
Molecular Hypergraph Neural Networks
Junwu Chen
Philippe Schwaller
GNN
41
10
0
20 Dec 2023
Cloud Services Enable Efficient AI-Guided Simulation Workflows across
  Heterogeneous Resources
Cloud Services Enable Efficient AI-Guided Simulation Workflows across Heterogeneous Resources
Logan T. Ward
J. G. Pauloski
Valérie Hayot-Sasson
Ryan Chard
Y. Babuji
Ganesh Sivaraman
Sutanay Choudhury
Kyle Chard
R. Thakur
Ian T. Foster
32
9
0
15 Mar 2023
Machine Learning Approach to Polymerization Reaction Engineering:
  Determining Monomers Reactivity Ratios
Machine Learning Approach to Polymerization Reaction Engineering: Determining Monomers Reactivity Ratios
Tung Nguyen
Mona Bavarian
11
0
0
03 Jan 2023
Improving Molecule Properties Through 2-Stage VAE
Improving Molecule Properties Through 2-Stage VAE
Chenghui Zhou
Barnabás Póczós
DRL
23
1
0
06 Dec 2022
TransPolymer: a Transformer-based language model for polymer property
  predictions
TransPolymer: a Transformer-based language model for polymer property predictions
Changwen Xu
Yuyang Wang
A. Farimani
19
86
0
03 Sep 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
45
373
0
05 Aug 2022
A graph representation of molecular ensembles for polymer property
  prediction
A graph representation of molecular ensembles for polymer property prediction
Matteo Aldeghi
Connor W. Coley
AI4CE
25
43
0
17 May 2022
Conditional $β$-VAE for De Novo Molecular Generation
Conditional βββ-VAE for De Novo Molecular Generation
Ryan J. Richards
A. Groener
BDL
DRL
24
10
0
01 May 2022
AugLiChem: Data Augmentation Library of Chemical Structures for Machine
  Learning
AugLiChem: Data Augmentation Library of Chemical Structures for Machine Learning
Rishikesh Magar
Yuyang Wang
Cooper Lorsung
Chen Liang
Hariharan Ramasubramanian
Peiyuan Li
A. Farimani
28
27
0
30 Nov 2021
Evening the Score: Targeting SARS-CoV-2 Protease Inhibition in Graph
  Generative Models for Therapeutic Candidates
Evening the Score: Targeting SARS-CoV-2 Protease Inhibition in Graph Generative Models for Therapeutic Candidates
Jenna A. Bilbrey
Logan T. Ward
Sutanay Choudhury
Neeraj Kumar
Ganesh Sivaraman
21
1
0
07 May 2021
Benchmarking Deep Graph Generative Models for Optimizing New Drug
  Molecules for COVID-19
Benchmarking Deep Graph Generative Models for Optimizing New Drug Molecules for COVID-19
Logan T. Ward
Jenna A. Bilbrey
Sutanay Choudhury
Neeraj Kumar
Ganesh Sivaraman
GNN
27
3
0
09 Feb 2021
Computing Graph Neural Networks: A Survey from Algorithms to
  Accelerators
Computing Graph Neural Networks: A Survey from Algorithms to Accelerators
S. Abadal
Akshay Jain
Robert Guirado
Jorge López-Alonso
Eduard Alarcón
GNN
27
225
0
30 Sep 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
21
279
0
08 Feb 2020
Deep Learning for Automated Classification and Characterization of
  Amorphous Materials
Deep Learning for Automated Classification and Characterization of Amorphous Materials
K. Swanson
Shubhendu Trivedi
Joshua Lequieu
Kyle Swanson
Risi Kondor
21
37
0
10 Sep 2019
SMILES-X: autonomous molecular compounds characterization for small
  datasets without descriptors
SMILES-X: autonomous molecular compounds characterization for small datasets without descriptors
G. Lambard
Ekaterina Gracheva
19
20
0
20 Jun 2019
1