Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.04644
Cited By
Algorithms that Remember: Model Inversion Attacks and Data Protection Law
12 July 2018
Michael Veale
Reuben Binns
L. Edwards
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Algorithms that Remember: Model Inversion Attacks and Data Protection Law"
31 / 31 papers shown
Title
Privacy Risks and Preservation Methods in Explainable Artificial Intelligence: A Scoping Review
Sonal Allana
Mohan Kankanhalli
Rozita Dara
35
0
0
05 May 2025
Reconciling Privacy and Explainability in High-Stakes: A Systematic Inquiry
Supriya Manna
Niladri Sett
183
0
0
30 Dec 2024
A Survey on Machine Unlearning: Techniques and New Emerged Privacy Risks
Hengzhu Liu
Ping Xiong
Tianqing Zhu
Philip S. Yu
47
6
0
10 Jun 2024
A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and Applications
Yi Zhang
Yuying Zhao
Zhaoqing Li
Xueqi Cheng
Yu-Chiang Frank Wang
Olivera Kotevska
Philip S. Yu
Tyler Derr
31
10
0
31 Aug 2023
AI Models Close to your Chest: Robust Federated Learning Strategies for Multi-site CT
Edward H. Lee
B. Kelly
E. Altinmakas
H. Doğan
M. Mohammadzadeh
...
Faezeh Sazgara
S. Wong
Michael E. Moseley
S. Halabi
Kristen W. Yeom
FedML
OOD
28
1
0
23 Mar 2023
PFSL: Personalized & Fair Split Learning with Data & Label Privacy for thin clients
Manas Wadhwa
Gagan Raj Gupta
Ashutosh Sahu
Rahul Saini
Vidhi Mittal
FedML
24
6
0
19 Mar 2023
Mysterious and Manipulative Black Boxes: A Qualitative Analysis of Perceptions on Recommender Systems
Jukka Ruohonen
24
5
0
20 Feb 2023
SplitOut: Out-of-the-Box Training-Hijacking Detection in Split Learning via Outlier Detection
Ege Erdogan
Unat Teksen
Mehmet Salih Celiktenyildiz
Alptekin Kupcu
A. E. Cicek
46
4
0
16 Feb 2023
Open RAN Security: Challenges and Opportunities
Madhusanka Liyanage
An Braeken
Shahriar Shahabuddin
Pasika Sashmal Ranaweera
39
84
0
03 Dec 2022
Unlearning Graph Classifiers with Limited Data Resources
Chao Pan
Eli Chien
O. Milenkovic
MU
27
33
0
06 Nov 2022
GRAIMATTER Green Paper: Recommendations for disclosure control of trained Machine Learning (ML) models from Trusted Research Environments (TREs)
E. Jefferson
J. Liley
Maeve Malone
S. Reel
Alba Crespi-Boixader
...
Christian Cole
F. Ritchie
A. Daly
Simon Rogers
Jim Q. Smith
32
7
0
03 Nov 2022
Machine Unlearning of Federated Clusters
Chao Pan
Jin Sima
Saurav Prakash
Vishal Rana
O. Milenkovic
FedML
MU
41
25
0
28 Oct 2022
Desiderata for next generation of ML model serving
Sherif Akoush
Andrei Paleyes
A. V. Looveren
Clive Cox
38
5
0
26 Oct 2022
Poisoning Attacks and Defenses on Artificial Intelligence: A Survey
M. A. Ramírez
Song-Kyoo Kim
H. A. Hamadi
Ernesto Damiani
Young-Ji Byon
Tae-Yeon Kim
C. Cho
C. Yeun
AAML
25
37
0
21 Feb 2022
Deletion Inference, Reconstruction, and Compliance in Machine (Un)Learning
Ji Gao
Sanjam Garg
Mohammad Mahmoody
Prashant Nalini Vasudevan
MIACV
AAML
19
22
0
07 Feb 2022
Enhanced Membership Inference Attacks against Machine Learning Models
Jiayuan Ye
Aadyaa Maddi
S. K. Murakonda
Vincent Bindschaedler
Reza Shokri
MIALM
MIACV
27
233
0
18 Nov 2021
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
38
145
0
25 Oct 2021
Hard to Forget: Poisoning Attacks on Certified Machine Unlearning
Neil G. Marchant
Benjamin I. P. Rubinstein
Scott Alfeld
MU
AAML
28
69
0
17 Sep 2021
Demystifying the Draft EU Artificial Intelligence Act
Michael Veale
Frederik J. Zuiderveen Borgesius
35
335
0
08 Jul 2021
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
23
71
0
04 Jul 2021
Adaptive Machine Unlearning
Varun Gupta
Christopher Jung
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
Chris Waites
MU
25
174
0
08 Jun 2021
Property Inference Attacks on Convolutional Neural Networks: Influence and Implications of Target Model's Complexity
Mathias Parisot
Balázs Pejó
Dayana Spagnuelo
MIACV
27
33
0
27 Apr 2021
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
35
412
0
14 Mar 2021
Anonymizing Machine Learning Models
Abigail Goldsteen
Gilad Ezov
Ron Shmelkin
Micha Moffie
Ariel Farkash
MIACV
19
5
0
26 Jul 2020
A Survey of Privacy Attacks in Machine Learning
M. Rigaki
Sebastian Garcia
PILM
AAML
39
213
0
15 Jul 2020
Reducing Risk of Model Inversion Using Privacy-Guided Training
Abigail Goldsteen
Gilad Ezov
Ariel Farkash
30
4
0
29 Jun 2020
Formalizing Data Deletion in the Context of the Right to be Forgotten
Sanjam Garg
S. Goldwasser
Prashant Nalini Vasudevan
AILaw
MU
43
82
0
25 Feb 2020
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Thomas Baumhauer
Pascal Schöttle
Matthias Zeppelzauer
MU
114
130
0
07 Feb 2020
Privacy Attacks on Network Embeddings
Michael Ellers
Michael Cochez
Tobias Schumacher
M. Strohmaier
Florian Lemmerich
AAML
19
12
0
23 Dec 2019
Disparate Vulnerability to Membership Inference Attacks
B. Kulynych
Mohammad Yaghini
Giovanni Cherubin
Michael Veale
Carmela Troncoso
13
39
0
02 Jun 2019
Membership Inference Attacks on Sequence-to-Sequence Models: Is My Data In Your Machine Translation System?
Sorami Hisamoto
Matt Post
Kevin Duh
MIACV
SLR
30
106
0
11 Apr 2019
1