ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.02582
  4. Cited By
Gaussian Processes and Kernel Methods: A Review on Connections and
  Equivalences

Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences

6 July 2018
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
    GP
    BDL
ArXivPDFHTML

Papers citing "Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences"

25 / 75 papers shown
Title
Optimal Order Simple Regret for Gaussian Process Bandits
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
39
51
0
20 Aug 2021
Discrepancy-based Inference for Intractable Generative Models using
  Quasi-Monte Carlo
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Ziang Niu
J. Meier
F. Briol
42
12
0
22 Jun 2021
Locality defeats the curse of dimensionality in convolutional
  teacher-student scenarios
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
Alessandro Favero
Francesco Cagnetta
Matthieu Wyart
35
31
0
16 Jun 2021
Bayesian Optimistic Optimisation with Exponentially Decaying Regret
Bayesian Optimistic Optimisation with Exponentially Decaying Regret
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
24
3
0
10 May 2021
Practical and Rigorous Uncertainty Bounds for Gaussian Process
  Regression
Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression
Christian Fiedler
C. Scherer
Sebastian Trimpe
GP
31
65
0
06 May 2021
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
63
19
0
22 Apr 2021
Sample Complexity of Offline Reinforcement Learning with Deep ReLU
  Networks
Sample Complexity of Offline Reinforcement Learning with Deep ReLU Networks
Thanh Nguyen-Tang
Sunil R. Gupta
Hung The Tran
Svetha Venkatesh
OffRL
70
7
0
11 Mar 2021
Small Sample Spaces for Gaussian Processes
Small Sample Spaces for Gaussian Processes
Toni Karvonen
24
13
0
04 Mar 2021
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Stable ResNet
Stable ResNet
Soufiane Hayou
Eugenio Clerico
Bo He
George Deligiannidis
Arnaud Doucet
Judith Rousseau
ODL
SSeg
46
51
0
24 Oct 2020
On Information Gain and Regret Bounds in Gaussian Process Bandits
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
29
128
0
15 Sep 2020
A Kernel Two-Sample Test for Functional Data
A Kernel Two-Sample Test for Functional Data
George Wynne
Andrew B. Duncan
25
42
0
25 Aug 2020
Deterministic error bounds for kernel-based learning techniques under
  bounded noise
Deterministic error bounds for kernel-based learning techniques under bounded noise
E. Maddalena
Paul Scharnhorst
Colin N. Jones
33
45
0
10 Aug 2020
On the Similarity between the Laplace and Neural Tangent Kernels
On the Similarity between the Laplace and Neural Tangent Kernels
Amnon Geifman
A. Yadav
Yoni Kasten
Meirav Galun
David Jacobs
Ronen Basri
25
89
0
03 Jul 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
27
54
0
30 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy
  Search and Planning
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
38
82
0
15 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
13
34
0
09 Jun 2020
Universal Robust Regression via Maximum Mean Discrepancy
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
45
15
0
01 Jun 2020
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Filip Tronarp
Simo Sarkka
Philipp Hennig
45
42
0
01 Apr 2020
Information Directed Sampling for Linear Partial Monitoring
Information Directed Sampling for Linear Partial Monitoring
Johannes Kirschner
Tor Lattimore
Andreas Krause
24
46
0
25 Feb 2020
Maximum likelihood estimation and uncertainty quantification for
  Gaussian process approximation of deterministic functions
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
42
39
0
29 Jan 2020
On the optimality of kernels for high-dimensional clustering
On the optimality of kernels for high-dimensional clustering
L. C. Vankadara
D. Ghoshdastidar
39
11
0
01 Dec 2019
Uncertainty Estimates for Ordinal Embeddings
Uncertainty Estimates for Ordinal Embeddings
Michael Lohaus
Philipp Hennig
U. V. Luxburg
39
6
0
27 Jun 2019
Spatial Analysis Made Easy with Linear Regression and Kernels
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
27
18
0
22 Feb 2019
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
112
325
0
09 Feb 2016
Previous
12