Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.02582
Cited By
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
6 July 2018
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GP
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences"
25 / 75 papers shown
Title
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
39
51
0
20 Aug 2021
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Ziang Niu
J. Meier
F. Briol
42
12
0
22 Jun 2021
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
Alessandro Favero
Francesco Cagnetta
Matthieu Wyart
35
31
0
16 Jun 2021
Bayesian Optimistic Optimisation with Exponentially Decaying Regret
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
24
3
0
10 May 2021
Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression
Christian Fiedler
C. Scherer
Sebastian Trimpe
GP
31
65
0
06 May 2021
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
63
19
0
22 Apr 2021
Sample Complexity of Offline Reinforcement Learning with Deep ReLU Networks
Thanh Nguyen-Tang
Sunil R. Gupta
Hung The Tran
Svetha Venkatesh
OffRL
70
7
0
11 Mar 2021
Small Sample Spaces for Gaussian Processes
Toni Karvonen
24
13
0
04 Mar 2021
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Stable ResNet
Soufiane Hayou
Eugenio Clerico
Bo He
George Deligiannidis
Arnaud Doucet
Judith Rousseau
ODL
SSeg
46
51
0
24 Oct 2020
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
29
128
0
15 Sep 2020
A Kernel Two-Sample Test for Functional Data
George Wynne
Andrew B. Duncan
25
42
0
25 Aug 2020
Deterministic error bounds for kernel-based learning techniques under bounded noise
E. Maddalena
Paul Scharnhorst
Colin N. Jones
33
45
0
10 Aug 2020
On the Similarity between the Laplace and Neural Tangent Kernels
Amnon Geifman
A. Yadav
Yoni Kasten
Meirav Galun
David Jacobs
Ronen Basri
25
89
0
03 Jul 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
27
54
0
30 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
38
82
0
15 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
13
34
0
09 Jun 2020
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
45
15
0
01 Jun 2020
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Filip Tronarp
Simo Sarkka
Philipp Hennig
45
42
0
01 Apr 2020
Information Directed Sampling for Linear Partial Monitoring
Johannes Kirschner
Tor Lattimore
Andreas Krause
24
46
0
25 Feb 2020
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
42
39
0
29 Jan 2020
On the optimality of kernels for high-dimensional clustering
L. C. Vankadara
D. Ghoshdastidar
39
11
0
01 Dec 2019
Uncertainty Estimates for Ordinal Embeddings
Michael Lohaus
Philipp Hennig
U. V. Luxburg
39
6
0
27 Jun 2019
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
27
18
0
22 Feb 2019
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
112
325
0
09 Feb 2016
Previous
1
2