Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.02582
Cited By
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
6 July 2018
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GP
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences"
50 / 75 papers shown
Title
Finite-Sample-Based Reachability for Safe Control with Gaussian Process Dynamics
Manish Prajapat
Johannes Köhler
Amon Lahr
Andreas Krause
Melanie Zeilinger
40
0
0
12 May 2025
Computation-Aware Kalman Filtering and Smoothing
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
91
3
0
13 Mar 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
50
0
0
02 Mar 2025
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
114
2
0
29 Oct 2024
Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Hugh Dance
Peter Orbanz
Arthur Gretton
CML
42
1
0
18 Oct 2024
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Ethan N. Epperly
J. Tropp
R. Webber
39
4
0
04 Oct 2024
Meta-Analysis with Untrusted Data
Shiva Kaul
Geoffrey J. Gordon
CML
32
1
0
12 Jul 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
48
5
0
30 Jun 2024
Nearest Neighbors GParareal: Improving Scalability of Gaussian Processes for Parallel-in-Time Solvers
Guglielmo Gattiglio
Lyudmila Grigoryeva
M. Tamborrino
40
1
0
20 May 2024
Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings
Oliver Schon
Zhengang Zhong
Sadegh Soudjani
39
8
0
15 Mar 2024
Global Safe Sequential Learning via Efficient Knowledge Transfer
Cen-You Li
Olaf Duennbier
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
52
2
0
22 Feb 2024
Smoothness Estimation for Whittle-Matérn Processes on Closed Riemannian Manifolds
Moritz Korte-Stapff
Toni Karvonen
Eric Moulines
31
0
0
31 Dec 2023
Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds
Paul Rosa
Viacheslav Borovitskiy
Alexander Terenin
Judith Rousseau
39
7
0
19 Sep 2023
Distributionally Robust Model-based Reinforcement Learning with Large State Spaces
Shyam Sundhar Ramesh
Pier Giuseppe Sessa
Yifan Hu
Andreas Krause
Ilija Bogunovic
OOD
47
10
0
05 Sep 2023
Nonlinear Meta-Learning Can Guarantee Faster Rates
Dimitri Meunier
Zhu Li
Arthur Gretton
Samory Kpotufe
35
6
0
20 Jul 2023
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas
David Holzmüller
U. V. Luxburg
Ingo Steinwart
MLT
44
14
0
23 May 2023
Alignment of Density Maps in Wasserstein Distance
A. Singer
Ruiyi Yang
37
8
0
21 May 2023
Expressive Mortality Models through Gaussian Process Kernels
M. Ludkovski
Jimmy Risk
31
1
0
02 May 2023
Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics Models
Jia-Jie Zhu
31
0
0
27 Apr 2023
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
37
5
0
11 Apr 2023
Reproducing kernel Hilbert spaces in the mean field limit
Christian Fiedler
Michael Herty
M. Rom
C. Segala
Sebastian Trimpe
38
6
0
28 Feb 2023
Introduction To Gaussian Process Regression In Bayesian Inverse Problems, With New ResultsOn Experimental Design For Weighted Error Measures
T. Helin
Andrew M. Stuart
A. Teckentrup
K. Zygalakis
36
4
0
09 Feb 2023
Bandit Convex Optimisation Revisited: FTRL Achieves
O
~
(
t
1
/
2
)
\tilde{O}(t^{1/2})
O
~
(
t
1/2
)
Regret
David Young
D. Leith
Georgios Iosifidis
26
0
0
01 Feb 2023
(Private) Kernelized Bandits with Distributed Biased Feedback
Fengjiao Li
Xingyu Zhou
Bo Ji
41
5
0
28 Jan 2023
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
S. Bouabid
Jake Fawkes
Dino Sejdinovic
CML
49
0
0
26 Jan 2023
Discovery of structure-property relations for molecules via hypothesis-driven active learning over the chemical space
Ayana Ghosh
Sergei V. Kalinin
M. Ziatdinov
27
8
0
06 Jan 2023
A Kernel Perspective of Skip Connections in Convolutional Networks
Daniel Barzilai
Amnon Geifman
Meirav Galun
Ronen Basri
28
12
0
27 Nov 2022
Statistical Optimality of Divide and Conquer Kernel-based Functional Linear Regression
Jiading Liu
Lei Shi
33
9
0
20 Nov 2022
On the Multidimensional Augmentation of Fingerprint Data for Indoor Localization in A Large-Scale Building Complex Based on Multi-Output Gaussian Process
Zhe Tang
Sihao Li
Kyeong Soo Kim
Jeremy Smith
21
0
0
19 Nov 2022
Isotropic Gaussian Processes on Finite Spaces of Graphs
Viacheslav Borovitskiy
Mohammad Reza Karimi
Vignesh Ram Somnath
Andreas Krause
40
7
0
03 Nov 2022
Optimisation & Generalisation in Networks of Neurons
Jeremy Bernstein
AI4CE
29
2
0
18 Oct 2022
Locally Smoothed Gaussian Process Regression
Davit Gogolashvili
B. Kozyrskiy
Maurizio Filippone
30
8
0
18 Oct 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
63
7
0
14 Oct 2022
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
29
3
0
04 Aug 2022
Optimal Rates for Regularized Conditional Mean Embedding Learning
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
40
47
0
02 Aug 2022
Collaborative Learning in Kernel-based Bandits for Distributed Users
Sudeep Salgia
Sattar Vakili
Qing Zhao
FedML
44
6
0
16 Jul 2022
Learning nonparametric ordinary differential equations from noisy data
Kamel Lahouel
Michael L. Wells
Victor Rielly
Ethan Lew
David M Lovitz
Bruno Jedynak
34
5
0
30 Jun 2022
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pfortner
Philipp Hennig
John P. Cunningham
85
19
0
30 May 2022
Fast Instrument Learning with Faster Rates
Ziyu Wang
Yuhao Zhou
Jun Zhu
36
3
0
22 May 2022
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu
Haowei Wang
Zhongxiang Dai
K. H. Low
Szu Hui Ng
33
4
0
10 May 2022
Instance-Dependent Regret Analysis of Kernelized Bandits
S. Shekhar
T. Javidi
29
3
0
12 Mar 2022
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
32
1
0
10 Mar 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Junyao Xing
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
39
14
0
24 Feb 2022
Data-Driven Chance Constrained Control using Kernel Distribution Embeddings
Adam J. Thorpe
T. Lew
Meeko Oishi
Marco Pavone
38
21
0
08 Feb 2022
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
38
18
0
08 Feb 2022
GParareal: A time-parallel ODE solver using Gaussian process emulation
K. Pentland
M. Tamborrino
Timothy John Sullivan
J. Buchanan
Lynton C. Appel
11
8
0
31 Jan 2022
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
31
3
0
19 Nov 2021
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
57
43
0
09 Nov 2021
Uniform Generalization Bounds for Overparameterized Neural Networks
Sattar Vakili
Michael Bromberg
Jezabel R. Garcia
Da-shan Shiu
A. Bernacchia
35
19
0
13 Sep 2021
Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for Safety-Critical Applications
A. Capone
Armin Lederer
Sandra Hirche
32
18
0
06 Sep 2021
1
2
Next