ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.02547
  4. Cited By
3D Steerable CNNs: Learning Rotationally Equivariant Features in
  Volumetric Data

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data

6 July 2018
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
    3DPC
ArXivPDFHTML

Papers citing "3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data"

38 / 38 papers shown
Title
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
119
2
0
16 Apr 2025
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
112
0
0
04 Apr 2025
Permutation Equivariant Neural Networks for Symmetric Tensors
Permutation Equivariant Neural Networks for Symmetric Tensors
Edward Pearce-Crump
186
1
0
14 Mar 2025
SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
Joohwan Seo
Soochul Yoo
Junwoo Chang
Hyunseok An
Hyunwoo Ryu
Soomi Lee
Arvind Kruthiventy
Jongeun Choi
R. Horowitz
108
2
0
12 Mar 2025
Learning local equivariant representations for quantum operators
Learning local equivariant representations for quantum operators
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
152
4
0
28 Jan 2025
Approximate Equivariance in Reinforcement Learning
Approximate Equivariance in Reinforcement Learning
Jung Yeon Park
Sujay Bhatt
Sihan Zeng
Lawson L. S. Wong
Alec Koppel
Sumitra Ganesh
Robin Walters
71
1
0
06 Nov 2024
Molecule Graph Networks with Many-body Equivariant Interactions
Molecule Graph Networks with Many-body Equivariant Interactions
Zetian Mao
Jiawen Li
Chen Liang
Diptesh Das
Masato Sumita
Koji Tsuda
Kelin Xia
Koji Tsuda
88
1
0
19 Jun 2024
Steerable Transformers
Steerable Transformers
Soumyabrata Kundu
Risi Kondor
ViT
LLMSV
71
1
0
24 May 2024
On the Fourier analysis in the SO(3) space : EquiLoPO Network
On the Fourier analysis in the SO(3) space : EquiLoPO Network
Dmitrii Zhemchuzhnikov
Sergei Grudinin
78
0
0
24 Apr 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
120
23
0
01 Mar 2024
Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators
Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators
Benedikt Alkin
Andreas Fürst
Simon Schmid
Lukas Gruber
Markus Holzleitner
Johannes Brandstetter
PINN
AI4CE
184
12
0
19 Feb 2024
Affine Invariance in Continuous-Domain Convolutional Neural Networks
Affine Invariance in Continuous-Domain Convolutional Neural Networks
A. Mohaddes
Johannes Lederer
49
1
0
13 Nov 2023
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Nima Dehmamy
Robin Walters
Yanchen Liu
Dashun Wang
Rose Yu
AI4CE
144
88
0
15 Sep 2021
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional
  Neural Network
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor
Zhen Lin
Shubhendu Trivedi
79
268
0
24 Jun 2018
Why do deep convolutional networks generalize so poorly to small image
  transformations?
Why do deep convolutional networks generalize so poorly to small image transformations?
Aharon Azulay
Yair Weiss
70
560
0
30 May 2018
CubeNet: Equivariance to 3D Rotation and Translation
CubeNet: Equivariance to 3D Rotation and Translation
Daniel E. Worrall
Gabriel J. Brostow
3DPC
72
143
0
12 Apr 2018
3D G-CNNs for Pulmonary Nodule Detection
3D G-CNNs for Pulmonary Nodule Detection
M. Winkels
Taco S. Cohen
MedIm
3DPC
62
107
0
12 Apr 2018
Roto-Translation Covariant Convolutional Networks for Medical Image
  Analysis
Roto-Translation Covariant Convolutional Networks for Medical Image Analysis
Erik J. Bekkers
Maxime W. Lafarge
M. Veta
K. Eppenhof
J. Pluim
R. Duits
MedIm
65
173
0
10 Apr 2018
Intertwiners between Induced Representations (with Applications to the
  Theory of Equivariant Neural Networks)
Intertwiners between Induced Representations (with Applications to the Theory of Equivariant Neural Networks)
Taco S. Cohen
Mario Geiger
Maurice Weiler
60
47
0
28 Mar 2018
HexaConv
HexaConv
Emiel Hoogeboom
Jorn W. T. Peters
Taco S. Cohen
Max Welling
67
57
0
06 Mar 2018
N-body Networks: a Covariant Hierarchical Neural Network Architecture
  for Learning Atomic Potentials
N-body Networks: a Covariant Hierarchical Neural Network Architecture for Learning Atomic Potentials
Risi Kondor
AI4CE
73
107
0
05 Mar 2018
Tensor field networks: Rotation- and translation-equivariant neural
  networks for 3D point clouds
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
83
970
0
22 Feb 2018
On the Generalization of Equivariance and Convolution in Neural Networks
  to the Action of Compact Groups
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
109
498
0
11 Feb 2018
Spherical CNNs
Spherical CNNs
Taco S. Cohen
Mario Geiger
Jonas Köhler
Max Welling
154
903
0
30 Jan 2018
Covariant Compositional Networks For Learning Graphs
Covariant Compositional Networks For Learning Graphs
Risi Kondor
H. Son
Horace Pan
Brandon M. Anderson
Shubhendu Trivedi
GNN
85
168
0
07 Jan 2018
Learning Steerable Filters for Rotation Equivariant CNNs
Learning Steerable Filters for Rotation Equivariant CNNs
Maurice Weiler
Fred Hamprecht
M. Storath
88
387
0
20 Nov 2017
Dynamic Routing Between Capsules
Dynamic Routing Between Capsules
S. Sabour
Nicholas Frosst
Geoffrey E. Hinton
174
4,595
0
26 Oct 2017
Design and Processing of Invertible Orientation Scores of 3D Images for
  Enhancement of Complex Vasculature
Design and Processing of Invertible Orientation Scores of 3D Images for Enhancement of Complex Vasculature
M. Janssen
A. Janssen
Erik J. Bekkers
J. O. Bescós
R. Duits
31
3
0
07 Jul 2017
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
403
2,463
0
10 Mar 2017
Equivariance Through Parameter-Sharing
Equivariance Through Parameter-Sharing
Siamak Ravanbakhsh
J. Schneider
Barnabás Póczós
81
257
0
27 Feb 2017
Rotation equivariant vector field networks
Rotation equivariant vector field networks
Diego Marcos
Michele Volpi
N. Komodakis
D. Tuia
64
270
0
29 Dec 2016
Steerable CNNs
Steerable CNNs
Taco S. Cohen
Max Welling
BDL
137
499
0
27 Dec 2016
Harmonic Networks: Deep Translation and Rotation Equivariance
Harmonic Networks: Deep Translation and Rotation Equivariance
Daniel E. Worrall
Stephan J. Garbin
Daniyar Turmukhambetov
Gabriel J. Brostow
124
710
0
14 Dec 2016
GIFT: A Real-time and Scalable 3D Shape Search Engine
GIFT: A Real-time and Scalable 3D Shape Search Engine
S. Bai
X. Bai
Zhichao Zhou
Zhaoxiang Zhang
Longin Jan Latecki
30
281
0
07 Apr 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
167
1,934
0
24 Feb 2016
Exploiting Cyclic Symmetry in Convolutional Neural Networks
Exploiting Cyclic Symmetry in Convolutional Neural Networks
Sander Dieleman
J. Fauw
Koray Kavukcuoglu
115
364
0
08 Feb 2016
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,289
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
1