Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.01969
Cited By
Variational Bayesian dropout: pitfalls and fixes
5 July 2018
Jiri Hron
A. G. Matthews
Zoubin Ghahramani
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Bayesian dropout: pitfalls and fixes"
13 / 13 papers shown
Title
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
33
17
0
05 Jan 2024
Are Ensembles Getting Better all the Time?
Pierre-Alexandre Mattei
Damien Garreau
OOD
FedML
53
1
0
29 Nov 2023
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
47
68
0
21 Nov 2022
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
UQCV
48
10
0
28 Feb 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
46
81
0
26 Oct 2021
Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
Yue Wu
Shuangfei Zhai
Nitish Srivastava
J. Susskind
Jian Zhang
Ruslan Salakhutdinov
Hanlin Goh
EDL
OffRL
OnRL
21
184
0
17 May 2021
LocalDrop: A Hybrid Regularization for Deep Neural Networks
Ziqing Lu
Chang Xu
Bo Du
Takashi Ishida
Lefei Zhang
Masashi Sugiyama
41
15
0
01 Mar 2021
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
Daniel S. Brown
Russell Coleman
R. Srinivasan
S. Niekum
BDL
35
101
0
21 Feb 2020
A Kings Ransom for Encryption: Ransomware Classification using Augmented One-Shot Learning and Bayesian Approximation
Amir Atapour-Abarghouei
Stephen Bonner
A. Mcgough
29
7
0
19 Aug 2019
Knowing what you know in brain segmentation using Bayesian deep neural networks
Patrick McClure
Nao Rho
J. Lee
Jakub R. Kaczmarzyk
C. Zheng
Satrajit S. Ghosh
D. Nielson
Adam G. Thomas
P. Bandettini
Francisco Pereira
UQCV
3DV
BDL
24
52
0
03 Dec 2018
Understanding Priors in Bayesian Neural Networks at the Unit Level
M. Vladimirova
Jakob Verbeek
Pablo Mesejo
Julyan Arbel
BDL
UQCV
19
4
0
11 Oct 2018
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
Dongkun Zhang
Lu Lu
Ling Guo
George Karniadakis
UQCV
27
399
0
21 Sep 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1