Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.01675
Cited By
Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion
4 July 2018
Jacob Buckman
Danijar Hafner
George Tucker
E. Brevdo
Honglak Lee
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion"
47 / 97 papers shown
Title
Deep Reinforcement Learning with Adjustments
H. Khorasgani
Haiyan Wang
Chetan Gupta
Susumu Serita
23
2
0
28 Sep 2021
When should agents explore?
Miruna Pislar
David Szepesvari
Georg Ostrovski
Diana Borsa
Tom Schaul
40
22
0
26 Aug 2021
Visual Adversarial Imitation Learning using Variational Models
Rafael Rafailov
Tianhe Yu
Aravind Rajeswaran
Chelsea Finn
SSL
30
49
0
16 Jul 2021
Evaluating the progress of Deep Reinforcement Learning in the real world: aligning domain-agnostic and domain-specific research
J. Luis
E. Crawley
B. Cameron
OffRL
27
6
0
07 Jul 2021
Improve Agents without Retraining: Parallel Tree Search with Off-Policy Correction
Assaf Hallak
Gal Dalal
Steven Dalton
I. Frosio
Shie Mannor
Gal Chechik
OffRL
OnRL
35
9
0
04 Jul 2021
MHER: Model-based Hindsight Experience Replay
Rui Yang
Meng Fang
Lei Han
Yali Du
Feng Luo
Xiu Li
OffRL
29
17
0
01 Jul 2021
Offline Reinforcement Learning as One Big Sequence Modeling Problem
Michael Janner
Qiyang Li
Sergey Levine
OffRL
71
651
0
03 Jun 2021
MapGo: Model-Assisted Policy Optimization for Goal-Oriented Tasks
Menghui Zhu
Minghuan Liu
Jian Shen
Zhicheng Zhang
Sheng Chen
Weinan Zhang
Deheng Ye
Yong Yu
Qiang Fu
Wei Yang
49
22
0
13 May 2021
Principled Exploration via Optimistic Bootstrapping and Backward Induction
Chenjia Bai
Lingxiao Wang
Lei Han
Jianye Hao
Animesh Garg
Peng Liu
Zhaoran Wang
OffRL
23
38
0
13 May 2021
Learning to drive from a world on rails
Di Chen
V. Koltun
Philipp Krahenbuhl
98
116
0
03 May 2021
Actionable Models: Unsupervised Offline Reinforcement Learning of Robotic Skills
Yevgen Chebotar
Karol Hausman
Yao Lu
Ted Xiao
Dmitry Kalashnikov
...
A. Irpan
Benjamin Eysenbach
Ryan Julian
Chelsea Finn
Sergey Levine
SSL
OffRL
37
146
0
15 Apr 2021
Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow
John Mcleod
Hrvoje Stojić
Vincent Adam
Dongho Kim
Jordi Grau-Moya
Peter Vrancx
Felix Leibfried
OffRL
21
2
0
26 Mar 2021
GST: Group-Sparse Training for Accelerating Deep Reinforcement Learning
Juhyoung Lee
Sangyeob Kim
Sangjin Kim
Wooyoung Jo
H. Yoo
OffRL
26
9
0
24 Jan 2021
A Survey on Deep Reinforcement Learning for Audio-Based Applications
S. Latif
Heriberto Cuayáhuitl
Farrukh Pervez
Fahad Shamshad
Hafiz Shehbaz Ali
Min Zhang
OffRL
60
73
0
01 Jan 2021
Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation
Chaochao Lu
Erdun Gao
Ke Wang
José Miguel Hernández-Lobato
Kun Zhang
Bernhard Schölkopf
CML
OOD
OffRL
29
57
0
16 Dec 2020
Generative Temporal Difference Learning for Infinite-Horizon Prediction
Michael Janner
Igor Mordatch
Sergey Levine
AI4CE
23
34
0
27 Oct 2020
Model-based Policy Optimization with Unsupervised Model Adaptation
Jian Shen
Han Zhao
Weinan Zhang
Yong Yu
34
27
0
19 Oct 2020
Softmax Deep Double Deterministic Policy Gradients
Ling Pan
Qingpeng Cai
Longbo Huang
72
86
0
19 Oct 2020
Mastering Atari with Discrete World Models
Danijar Hafner
Timothy Lillicrap
Mohammad Norouzi
Jimmy Ba
DRL
53
823
0
05 Oct 2020
Dynamic Horizon Value Estimation for Model-based Reinforcement Learning
Junjie Wang
Qichao Zhang
Dongbin Zhao
Mengchen Zhao
Jianye Hao
OffRL
29
5
0
21 Sep 2020
Systematic Generalization on gSCAN with Language Conditioned Embedding
Tong Gao
Qi Huang
Raymond J. Mooney
24
22
0
11 Sep 2020
Avoiding Negative Side Effects due to Incomplete Knowledge of AI Systems
Sandhya Saisubramanian
S. Zilberstein
Ece Kamar
20
21
0
24 Aug 2020
Learning Off-Policy with Online Planning
Harshit S. Sikchi
Wenxuan Zhou
David Held
OffRL
37
46
0
23 Aug 2020
Selective Dyna-style Planning Under Limited Model Capacity
Zaheer Abbas
Samuel Sokota
Erin J. Talvitie
Martha White
37
32
0
05 Jul 2020
A Unifying Framework for Reinforcement Learning and Planning
Thomas M. Moerland
Joost Broekens
Aske Plaat
Catholijn M. Jonker
OffRL
36
9
0
26 Jun 2020
The Effect of Multi-step Methods on Overestimation in Deep Reinforcement Learning
Lingheng Meng
R. Gorbet
Dana Kulic
OffRL
30
27
0
23 Jun 2020
Model-based Adversarial Meta-Reinforcement Learning
Zichuan Lin
G. Thomas
Guangwen Yang
Tengyu Ma
OOD
27
52
0
16 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
33
82
0
15 Jun 2020
Variational Model-based Policy Optimization
Yinlam Chow
Brandon Cui
Moonkyung Ryu
Mohammad Ghavamzadeh
OffRL
22
12
0
09 Jun 2020
Maximum Entropy Model Rollouts: Fast Model Based Policy Optimization without Compounding Errors
Chi Zhang
S. Kuppannagari
Viktor Prasanna
22
4
0
08 Jun 2020
PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals
Henry Charlesworth
Giovanni Montana
OffRL
29
24
0
01 Jun 2020
Model-Augmented Actor-Critic: Backpropagating through Paths
I. Clavera
Yao Fu
Pieter Abbeel
44
87
0
16 May 2020
An empirical investigation of the challenges of real-world reinforcement learning
Gabriel Dulac-Arnold
Nir Levine
D. Mankowitz
Jerry Li
Cosmin Paduraru
Sven Gowal
Todd Hester
OffRL
34
121
0
24 Mar 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
38
314
0
15 Feb 2020
Direct and indirect reinforcement learning
Yang Guan
Shengbo Eben Li
Jingliang Duan
Jie Li
Yangang Ren
Qi Sun
B. Cheng
OffRL
38
34
0
23 Dec 2019
Combining Q-Learning and Search with Amortized Value Estimates
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
Tobias Pfaff
T. Weber
Lars Buesing
Peter W. Battaglia
OffRL
27
47
0
05 Dec 2019
Adaptive Online Planning for Continual Lifelong Learning
Kevin Lu
Igor Mordatch
Pieter Abbeel
OffRL
OnRL
CLL
11
15
0
03 Dec 2019
Multi-Path Policy Optimization
L. Pan
Qingpeng Cai
Longbo Huang
18
2
0
11 Nov 2019
Asynchronous Methods for Model-Based Reinforcement Learning
Yunzhi Zhang
I. Clavera
Bo-Yu Tsai
Pieter Abbeel
OffRL
19
27
0
28 Oct 2019
Sample Complexity of Reinforcement Learning using Linearly Combined Model Ensembles
Aditya Modi
Nan Jiang
Ambuj Tewari
Satinder Singh
30
129
0
23 Oct 2019
Imagined Value Gradients: Model-Based Policy Optimization with Transferable Latent Dynamics Models
Arunkumar Byravan
Jost Tobias Springenberg
A. Abdolmaleki
Roland Hafner
Michael Neunert
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
OffRL
17
41
0
09 Oct 2019
Soft-Label Dataset Distillation and Text Dataset Distillation
Ilia Sucholutsky
Matthias Schonlau
DD
33
132
0
06 Oct 2019
Gradient-Aware Model-based Policy Search
P. DÓro
Alberto Maria Metelli
Andrea Tirinzoni
Matteo Papini
Marcello Restelli
29
34
0
09 Sep 2019
Deterministic Value-Policy Gradients
Qingpeng Cai
L. Pan
Pingzhong Tang
29
1
0
09 Sep 2019
Sample-efficient Deep Reinforcement Learning with Imaginary Rollouts for Human-Robot Interaction
M. Thabet
Massimiliano Patacchiola
Angelo Cangelosi
OffRL
24
12
0
15 Aug 2019
Towards Model-based Reinforcement Learning for Industry-near Environments
Per-Arne Andersen
M. G. Olsen
Ole-Christoffer Granmo
OffRL
DRL
22
4
0
27 Jul 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
Previous
1
2