ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.01604
  4. Cited By
Quasi-Monte Carlo Variational Inference

Quasi-Monte Carlo Variational Inference

4 July 2018
Alexander K. Buchholz
F. Wenzel
Stephan Mandt
    BDL
ArXiv (abs)PDFHTML

Papers citing "Quasi-Monte Carlo Variational Inference"

24 / 24 papers shown
Title
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
120
0
0
03 Oct 2024
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
491
10,591
0
17 Feb 2020
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
182
694
0
15 Nov 2017
Improving approximate Bayesian computation via quasi-Monte Carlo
Improving approximate Bayesian computation via quasi-Monte Carlo
Alexander K. Buchholz
Nicolas Chopin
64
26
0
03 Oct 2017
Reducing Reparameterization Gradient Variance
Reducing Reparameterization Gradient Variance
Andrew C. Miller
N. Foti
Alexander DÁmour
Ryan P. Adams
61
84
0
22 May 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
57
599
0
13 Apr 2017
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for
  Variational Inference
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference
Geoffrey Roeder
Yuhuai Wu
David Duvenaud
BDL
127
202
0
27 Mar 2017
Edward: A library for probabilistic modeling, inference, and criticism
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
76
300
0
31 Oct 2016
The Generalized Reparameterization Gradient
The Generalized Reparameterization Gradient
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
BDL
88
169
0
07 Oct 2016
Optimization Methods for Large-Scale Machine Learning
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
249
3,224
0
15 Jun 2016
Overdispersed Black-Box Variational Inference
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
130
47
0
03 Mar 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
289
4,807
0
04 Jan 2016
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
276
1,246
0
01 Sep 2015
Improving Simulated Annealing through Derandomization
Improving Simulated Annealing through Derandomization
Mathieu Gerber
L. Bornn
58
6
0
12 May 2015
Control Functionals for Quasi-Monte Carlo Integration
Control Functionals for Quasi-Monte Carlo Integration
Chris J. Oates
Mark Girolami
88
27
0
14 Jan 2015
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
H. Avron
Vikas Sindhwani
Jiyan Yang
Michael W. Mahoney
87
166
0
29 Dec 2014
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
On Integration Methods Based on Scrambled Nets of Arbitrary Size
On Integration Methods Based on Scrambled Nets of Arbitrary Size
Mathieu Gerber
69
16
0
12 Aug 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
135
1,828
0
01 Jul 2014
Sequential Quasi-Monte Carlo
Sequential Quasi-Monte Carlo
Mathieu Gerber
Nicolas Chopin
80
56
0
17 Feb 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
150
1,167
0
31 Dec 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
262
2,627
0
29 Jun 2012
Variational Bayesian Inference with Stochastic Search
Variational Bayesian Inference with Stochastic Search
John Paisley
David M. Blei
Michael I. Jordan
BDL
106
499
0
27 Jun 2012
Local antithetic sampling with scrambled nets
Local antithetic sampling with scrambled nets
Art B. Owen
69
50
0
04 Nov 2008
1